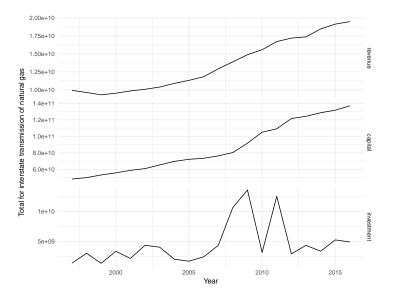
### Estimating regulatory distortions of natural gas pipeline investment incentives

Paul Schrimpf

UBC


April 13, 2023

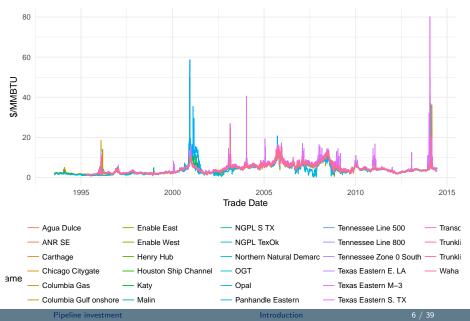
#### Introduction

Interstate natural gas pipelines in US

- Regulated price of transmission set by rate-of-return
- Investment must be approved by regulator (FERC)
- How do the investment incentives faced by pipelines compare to the marginal value of investment?
- Estimate pipelines' perceived marginal value of investment from Euler equations
- Use differences in prices between trading hubs on pipeline network to measure marginal social value of investment

#### Natural gas is large and growing




#### Suggestive evidence of over-investment

- Rate-of-return regulation Averch-Johnson effect
  - Pipeline owners can raise their prices by increasing capital costs
- Rate of return allowed by FERC is high
  - von Hirschhausen (2008) : regulated rates of return average 11.6% for projects between 1996 and 2003
- FERC approves nearly all pipeline expansion projects only two rejected application between 1996 and 2016

#### Suggestive evidence of under-investment

- Prices of natural gas at different locations sometime diverge
  - Cuddington and Wang (2006), Marmer, Shapiro, and MacAvoy (2007), Brown and Yücel (2008), Park, Mjelde, and Bessler (2008)
- Gas marketers, not pipeline owners, earn profits from arbitrage

#### Daily natural gas prices



#### Contributions

- Construct a detailed pipeline dataset from FERC and EIA filings
- Estimate pipelines' investment costs (including regulatory costs) from Euler Equations
  - Nonparametrically identified
  - Simple to estimate
  - ► Key assumption : information set of pipeline is observed or estimable
- Examine relationship between investment cost and pipeline network bottlenecks
- Areas of pipeline congestion have:
  - Lower regulatory marginal investment cost
  - Lower expected marginal product of capital

## Natural gas from production to consumption

- 1. Production at well-head
- 2. Gas purchased at well-head by marketer
- 3. Marketer pays pipeline to transport gas
- 4. Gas sold to :
  - Other marketer at hub
  - Local distribution company
  - Power plant or large industrial user
- 5. Local distribution company delivers gas to industrial and residential consumers

## Contracts between pipelines and marketers

- Long term (average 9.1 years) contracts for firm transportation service
  - Guaranteed right to transport a specified volume of gas along a pipeline per day
  - Large reservation charge
    - $\star\,$  Set by FERC using rate of return to cover capital costs
  - Small additional charge per unit used
    - ★ Set by FERC to cover marginal operating cost
- Unused capacity sold as interruptible transportation service
  - Price  $\leq$  reservation + utilization price of FTS
  - Open access short term auctions through online bulletin boards

#### Building or expanding a pipeline

- 1. Obtain binding agreements from gas marketers to purchase 5-10 year FTS contracts for 80+% of planned capacity
- 2. File application with FERC
- 3. Public hearings, environmental assesments, etc
- 4. FERC approves 99% of applications
- ► Takes 1-3 years for new pipelines, much less for smaller projects
- Decommissioning and sales also need to be approved
- Streamlined for small projects
  - ► Automatic (<\$11,400,000) notify landowners 45 days in advance
  - Prior notice (<\$32,400,000) file plan with FERC, automatically approved after 60 days if no objection

#### Investment model

- Pipeline j choosing investment at time t
- Bellman equation:

$$v(k_{jt}, x_{jt}) = \max_{i_{jt}} \pi(k_{jt}, x_{jt}) - i_{jt}(1 + \eta_{jt}) - c(k_{jt}, i_{jt}) + \beta E \left[ v(k_{jt} + i_{jt}, x_{jt+1}) | \mathfrak{I}_{jt} \right]$$

#### where

- $k_{jt} = capital$
- ▶ i<sub>jt</sub> = dollars of investment
- $\pi =$  variable profit function
- ► x<sub>jt</sub> = vector of observed and unobserved variables affecting profits, e.g. k<sub>-jt</sub>, details of pipeline network, gas reserves and discoveries
- c(k, i) = cost of obtaining FERC approval
- $\eta_{jt} = \text{investment cost shock}$
- β = discount factor
- ▶ J<sub>jt</sub> = information set of pipeline j at time t

#### Investment model

Bellman equation:

$$\begin{aligned} v(k_{jt}, x_{jt}) &= \max_{i_{jt}} \pi(k_{jt}, x_{jt}) - i_{jt}(1 + \eta_{jt}) - c(k_{jt}, i_{jt}) + \\ &+ \beta E \left[ v(k_{jt} + i_{jt}, x_{jt+1}) |\mathfrak{I}_{jt} \right] \end{aligned}$$

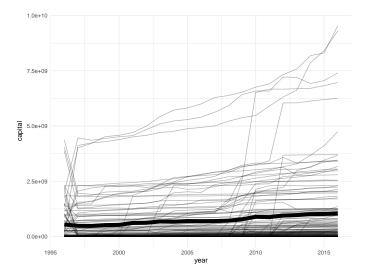
First order condition and envelope theorem gives Euler equation:

$$1 + \eta_{jt} + \frac{\partial c}{\partial i}(k_{jt}, i_{jt}) =$$
  
=  $\beta E \begin{bmatrix} \frac{\partial \pi}{\partial k}(k_{jt+1}, x_{jt+1}) - \frac{\partial c}{\partial k}(k_{jt+1}, i_{jt+1}) + \\ 1 + \eta_{jt+1} + \frac{\partial c}{\partial i}(k_{jt+1}, i_{jt+1}) | \mathcal{I}_{jt} \end{bmatrix}$ 

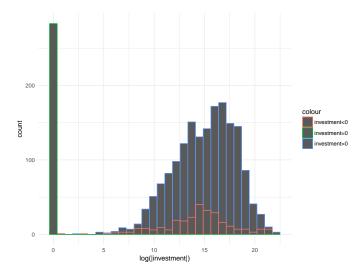
#### Identification of c(k, i)

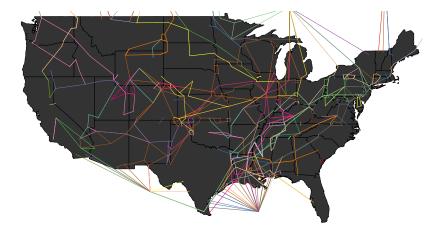
► Key simplification :  $\pi_{jt} = \pi(k_{jt}, x_{jt})$  is observed and  $k_{jt+1} = k_{jt} + i_{jt} \in \mathcal{I}_{jt}$  so

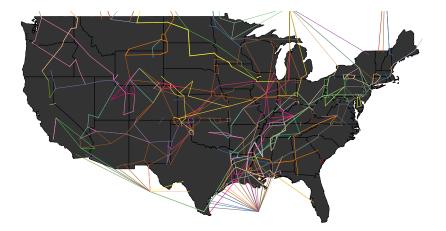
$$\mathbf{E}\left[\frac{\partial \pi}{\partial k}(k_{jt+1}, x_{jt+1})|\mathbb{J}_{jt}\right] = \frac{\partial}{\partial k}\mathbf{E}\left[\pi_{jt+1}|\mathbb{J}_{jt}\right]$$

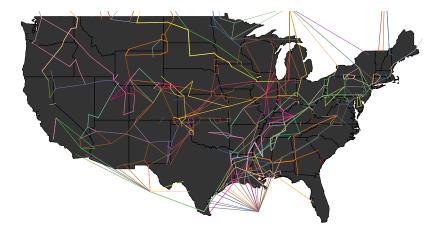

- Assumptions
  - 1.  $\beta$  is known
  - 2.  $E[\cdot|\mathcal{I}_{jt}]$  is identified (e.g.  $\mathcal{I}_{jt}$  is observed)
  - 3. Boundary condition :  $c(k, 0) = 0 \forall k$
- Then c(k, i) is identified

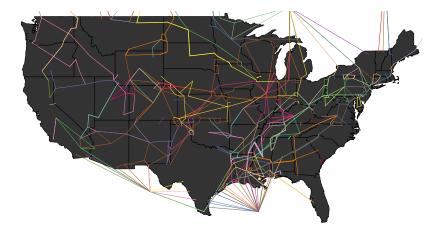
#### Pipeline data

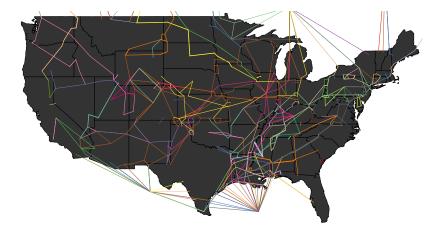

▶ FERC Form 2/2a annual data on pipeline companies


- 1996-2016
- 96-123 companies each year
- detailed information about evenue, expenses, capital, transmission volume, etc
- Iimited information about pipeline locations and connections
- EIA form 176 has information on each pipelines' mileage and flow within each state and capacities between states
  - 1997-2015
  - merged with FERC data by company name 3% of pipeline mileage unmatched


#### Evolution of capital





### Distribution of investment














#### Empirical specification

- Information set ,  $\mathfrak{I}_{jt} =$ 
  - capital, dekatherms of gas transmitted
  - total of pipelines that operate in the same states capital and transmission
  - year dummies
- $\frac{\partial}{\partial k} \mathbb{E}[\pi_{t+1}|\mathcal{I}_t]$  estimated by regression with all linear terms and second order terms involving capital
- Regulatory cost assumed to be either linear or quadratic
- Instruments  $= \mathcal{I}_{jt-1}$

#### Linear regulatory cost

• Linear regulatory cost :  $c(k, i) = c_i i$ 

Euler equation

$$(1+c_i)(1-\beta)+\eta_t=\beta\frac{\partial}{\partial k}\mathrm{E}[\pi_{t+1}|\mathcal{I}_t]$$

Estimator

$$\widehat{c}_i = \frac{\beta}{1-\beta} \overline{\frac{\partial}{\partial k} \mathbf{E}[\pi_{t+1}|\mathfrak{I}_t]} - 1$$

#### Results : linear regulatory cost

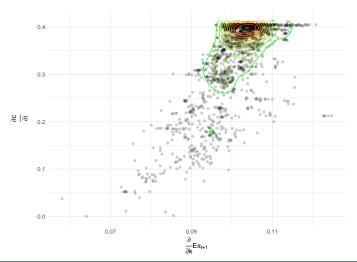
| $\widehat{\frac{\partial}{\partial k} \mathbf{E}[\pi_{t+1}   \mathfrak{I}_t]}$ | 0.098  |        |        |        |        |        |  |  |
|--------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--|--|
|                                                                                | (0.01) |        |        |        |        |        |  |  |
| $\beta$ (fixed)                                                                | 0.90   | 0.91   | 0.92   | 0.93   | 0.94   | 0.95   |  |  |
| ĉ                                                                              | -0.12  | -0.01  | 0.12   | 0.29   | 0.53   | 0.86   |  |  |
|                                                                                | (0.11) | (0.12) | (0.14) | (0.16) | (0.19) | (0.24) |  |  |

#### Results : quadratic regulatory cost

Quadratic regulatory cost : c(k, i) = c<sub>i</sub>i + c<sub>ik</sub>ki + c<sub>ii</sub>i<sup>2</sup>
Euler equation

$$1 + c_i + c_{ik}k_t + 2c_{ii}i_t + \eta_t = \beta \frac{\partial}{\partial k} \mathbb{E}[\pi_{t+1}|\mathcal{I}_t] + \beta \mathbb{E}[-c_{ik}i_{t+1} + 1 + c_i + c_{ik}k_{t+1} + 2c_{ii}i_{t+1}|\mathcal{I}_t]$$

Estimate from moment condition  $E[\eta_t | \mathcal{I}_{t-1}] = 0$ 


#### Results : quadratic regulatory cost

| β (fixed)                       | 0.91   | 0.93   | 0.95   |  |
|---------------------------------|--------|--------|--------|--|
| ĉi                              | 0.005  | 0.038  | 0.98   |  |
|                                 | (0.15) | (0.19) | (0.28) |  |
| $\widehat{c}_{ik}	imes 10^{11}$ | -7.4   | -9.7   | -13.8  |  |
|                                 | (6.4)  | (9.8)  | (13.1) |  |
| $\widehat{c}_{ii}	imes 10^{11}$ | -3.9   | -5.1   | -7.1   |  |
|                                 | (3.3)  | (5.0)  | (6.7)  |  |
| $\frac{\partial c}{\partial i}$ | -0.007 | 0.30   | 0.86   |  |
|                                 | (0.12) | (0.16) | (0.25) |  |
|                                 |        |        |        |  |

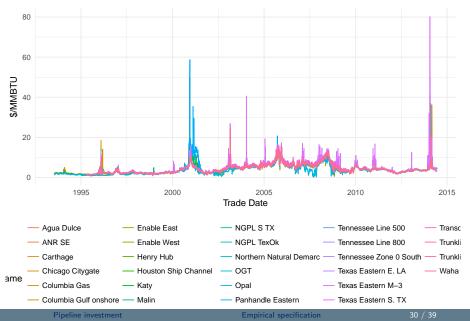
#### Distribution across firms

|                                                                                                    | Percentile |       |       |      |      |      |  |  |
|----------------------------------------------------------------------------------------------------|------------|-------|-------|------|------|------|--|--|
|                                                                                                    | 5          |       | 25    |      |      | 95   |  |  |
| $\frac{\partial}{\partial k} \mathbf{E}[\pi_{t+1} \mathcal{I}_t]$                                  | 0.079      | 0.088 | 0.095 | 0.1  | 0.1  | 0.11 |  |  |
| $rac{\partial}{\partial k} \mathbf{E}[\pi_{t+1} \mathcal{I}_t]$<br>$rac{\partial c}{\partial i}$ | 0.072      | 0.15  | 0.28  | 0.36 | 0.38 | 0.38 |  |  |
| $\begin{array}{l} \text{Correlation} \\ \beta = 0.93 \end{array}$                                  | 0.87       |       |       |      |      |      |  |  |

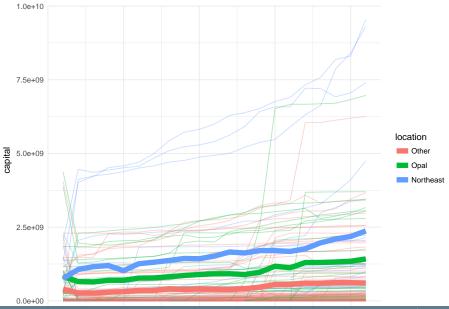
Estimated distribution of marginal product of capital and marginal regulatory investment cost



Pipeline investment


Empirical specification

# Investment incentives and price divergence

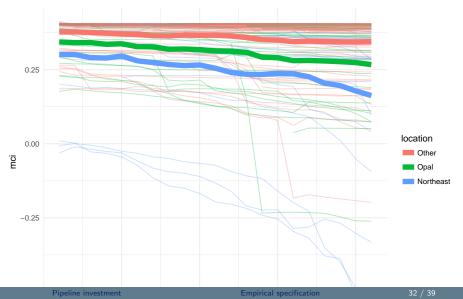

Three obvious areas of price divergence

- 1. Higher prices in the Northeast
- 2. Lower prices at Opal hub in Indiana
- 3. California energy crisis in late 2001
- Compare investment incentives of pipeline operating in these areas with other pipelines

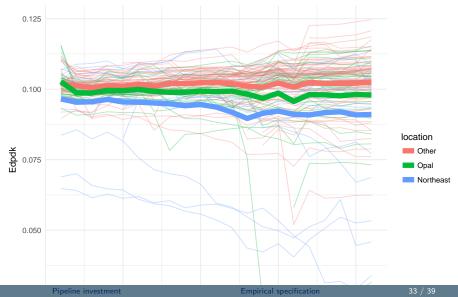
#### Daily natural gas prices



#### Capital by pipeline location




Pipeline investment


Empirical specification

31 / 39

### Marginal regulatory cost by pipeline location



## Marginal product of capital by pipeline location





- Estimated pipelines' investment costs (including regulatory costs) from Euler Equations
  - ► Key assumption : information set of pipeline is observed or estimable
- Areas of pipeline congestion have:
  - Lower regulatory marginal investment cost
  - Lower expected marginal product of capital
- Aligning transmission prices with market prices may do more to relieve pipeline congestion than streamlining approval process
- Caveat: results do not say whether or not it is desirable to reduce congestion

#### Future research

- Estimate marginal value of pipeline capacity
  - Model of Cremer and Laffont (2002), Cremer, Gasmi, and Laffont (2003) : marginal value of capacity = price differential - marginal cost of transport
- Incorporate details of network into model

#### References |

Brown, Stephen P.A. and Mine K. Yücel. 2008. "Deliverability and regional pricing in U.S. natural gas markets." *Energy Economics* 30 (5):2441–2453. URL http://www.sciencedirect.com/science/article/ B6V7G-4RJYV73-1/2/86a83d6bd3fc982374752d82a6e84012.

- Cremer, Helmuth, Farid Gasmi, and Jean-Jacques Laffont. 2003. "Access to Pipelines in Competitive Gas Markets." *Journal of Regulatory Economics* 24 (1):5–33. URL http://dx.doi.org/10.1023/A:1023943613605.
- Cremer, Helmuth and Jean-Jacques Laffont. 2002. "Competition in gas markets." *European Economic Review* 46 (4-5):928-935. URL http://www.sciencedirect.com/science/article/ B6V64-44W42T9-3/2/1a1d33358e00c05f2810096d6933ae1b.

#### References II

Cuddington, John and Zhongmin Wang. 2006. "Assessing the Degree of Spot Market Integration for U.S. Natural Gas: Evidence from Daily Price Data." *Journal of Regulatory Economics* 29 (2):195–210. URL http://dx.doi.org/10.1007/s11149-006-6035-2.

Marmer, Vadim, Dmitry Shapiro, and Paul MacAvoy. 2007. "Bottlenecks in regional markets for natural gas transmission services." Energy Economics 29 (1):37-45. URL http://www.sciencedirect.com/science/article/ B6V7G-4HDX6VY-1/2/e069f9ba66e375debda4f815264ba7eb.

Park, Haesun, James W. Mjelde, and David A. Bessler. 2008. "Price interactions and discovery among natural gas spot markets in North America." *Energy Policy* 36 (1):290–302. URL http://www.sciencedirect.com/science/article/ B6V2W-4R05JDP-4/2/89dea50697b47c1417c9c498af8eb548.

#### References III

von Hirschhausen, Christian. 2008. "Infrastructure, regulation, investment and security of supply: A case study of the restructured US natural gas market." Utilities Policy 16 (1):1 - 10. URL http://www. sciencedirect.com/science/article/pii/S0957178707000598.

#### Regulatory history

- 1978 Natural Gas Policy Act begins phase out of producer price regulation
- 1985 FERC Order 436 encourage third party access
- 1992 FERC Order 636 mandates full third party access
- 1996 FERC Order 889 requires transmission employees function independently from marketing employees
- 2000 FERC Order 637 requires open access online information on tariffs and daily auctions for released capacity
- 2003 FERC Order 2004 requires corporate separation of transmission and marketers
- 2006 Supreme Court overturns FERC Order 2004; requires "functional no-conduit rule" instead
- 2008 FERC revies Order 2004 to allow integrated planning, but still functional separation of transmission and marketing employees