Paul Schrimpf

Hsieh, König and Liu (201 ^{Model} Data Estimation

Atalay et al (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an. Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data Estimation Pacultr

References

Network formation

Paul Schrimpf

UBC Vancouver School of Economics 565

March 31, 2020

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Estimatio
- Kesules .
- Atalay et al. (2011)
- Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model
- Data
- Estimatio
- reseres

References

Network formation

- Network formation: model of which nodes are connected
- Goal: parsimonious, tractable, and estimable model that matches features of observed networks
- Types of models
 - Random network models: specify
 P(*i*&*j* connect|other connections, node characteristics)
 - Strategic network formation: specify payoffs $u_i(G, \cdot)$ and equilibrium concept (e.g. pairwise stability)
 - *G* is pairwise stable if for each link neither player would be better off without it, and there are no two players would both be better off by adding a link
 - Payoffs could come from a subsequent game on the network

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model Data Estimatic Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Section 1

Hsieh, König, and Liu (2017)

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model Data
- Estimation
- Results

References

"Network Formation with Local Complements and Global Substitutes: The Case of R&D Networks" Hsieh, König, and Liu (2017)

- Estimable model of R&D network formation and production
- Estimate for chemical firms
- Examine key firms and R&D collaboration subsidies

Paul Schrimpf

Hsieh, König, and Liu (2017

Model

- Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model Data
- Estimatio
- Results

References

Profits

$$\pi_i(q, G) = \eta_i q_i - \nu q_i^2 - bq_i \sum_{j \neq i} q_j + \rho \sum_{j=1}^n a_{ij} q_j q_j - \zeta d_i$$

where

- A is collaboration network
- $\rho \ge 0$ local complementarity
- *b* > 0 global substitutability
- *d_i* = number of collaborators
- Potential function

$$\Phi(q,G) = \sum_{i=1}^{n} (\eta_i q_i - \nu q_i^2) - \frac{b}{2} \sum_i \sum_{j \neq i} q_j q_j + \frac{\rho}{2} \sum_i \sum_j a_{ij} q_i q_j - \zeta m$$

is such that

- $\Phi(q, G \oplus (i, j)) \Phi(q, G) = \pi_i(q, G \oplus (i, j)) \pi_i(q, G)$
- $\Phi(q'_i, q_{-i}, G) \Phi(q, G) = \pi_i(q'_i, q_{-i}, G) \pi_i(q, G)$

Model 1

Model 2

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model

- Data Estimation
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model
- Data
- Estimatio
- References

• Equilibrium:

- "Natural" equilibrium concepts (e.g. pairwise stable links + Nash in q) difficult to characterize and typically not unique
- Instead, introduce time and stochastic move opportunities, solve for unique stationary distribution of *q*, *G*

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model

- Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar a Jackson (2013) Lee and Fong (20
- Ho and Lee
- Data
- Estimatio
- Results

References

Network formation process 1

- Continuous time
- $q \in \mathcal{Q}$ a discrete and bounded set
- State of model $\omega_t = (q_t, G_t)$
- Move opportunities
 - 1 Quantity adjustment, arrival rate χ firm *i* chooses *q* to maximize profits with some error

$$\mathsf{P}(\omega_{t+\Delta t} = (q, q_{-it}, G_t) | \omega_t = (q_t, G_t)) = \chi \frac{e^{\partial \pi_i(q, q_{-it}, G_t)}}{\int_{\mathcal{Q}} e^{\partial \pi_i(q', q_{-it}, G_t)} dq'} \Delta t + o(\Delta t)$$

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model
- Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation
- Results

References

Network formation process 2

2 Link formation, arrival rate τ , (i, j) choose whether to link

$$P(\omega_{t+\Delta t} = (q_t, G_t \oplus (i, j)) | \omega_t = (q_t, G_t)) = \tau \frac{e^{\partial \Phi(q, G_t \oplus (i, j))}}{e^{\partial \phi(q, G_t \oplus (i, j))} + e^{\partial \phi(q, G_t)}} \Delta t + o(t)$$

- Linking if $\pi_i(q, G_t \oplus (i, j)) \pi_i(q, G_t) + \epsilon_{i,j,t} > 0$ and $\pi_i(q, G_t \oplus (i, j)) \pi_i(q, G_t) + \epsilon_{i,i,t} > 0$
- Difference in π equal for *i* and *j*, and = $\Phi(q, G \oplus (i, j)) - \Phi(q, G)$

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model

Data Estimation

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

- -

Network formation process 3

3 Link removal, arrival rate ξ , (*i*, *j*) choose whether to remove link

$$P(\omega_{t+\Delta t} = (q_t, G_t \ominus (i, j)) | \omega_t = (q_t, G_t)) = \xi \frac{e^{\vartheta \oplus (q, G_t \ominus (i, j))}}{e^{\vartheta \oplus (q, G_t \ominus (i, j))} + e^{\vartheta \oplus (q, G_t)}} \Delta t + o(\xi)$$

Paul Schrimpf

Hsieh, König, and Liu (2017

- Model
- Data
- Estimatio

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar a Jackson (2013) Lee and Fong (20

- Ho and Lee (2019)
- Model
- Data
- Estimatio
- Results

References

Stationary distribution

- Model is continuous time, discrete state Markov chain
- Stationary distribution:

$$\mu^{\vartheta}(q,G) = \frac{e^{\vartheta(\Phi(q,G) - m\log(\xi/\tau))}}{\sum_{G' \in \mathcal{G}^n} \int_{\mathcal{Q}^n} e^{\vartheta(\Phi(q,G') - m'\log(\xi/\tau))} dq'}$$

where

• Potential function

$$\Phi(q, G) = \sum_{i=1}^{n} (\eta_i q_i - \nu q_i^2) - \frac{b}{2} \sum_{i} \sum_{j \neq i} q_i q_j + \frac{\rho}{2} \sum_{i} \sum_{j} a_{ij} q_i q_j - \zeta m$$

is such that

- $\Phi(q, G \oplus (i, j)) \Phi(q, G) = \pi_i(q, G \oplus (i, j)) \pi_i(q, G)$
- $\Phi(q'_i, q_{-i}, G) \Phi(q, G) = \pi_i(q'_i, q_{-i}, G) \pi_i(q, G)$
- Propositions 2-3 characterize stationary distribution

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model

Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data

- Estimatio
- Results

References

Average degree and output

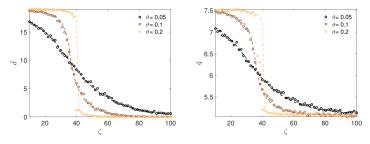


Figure 1: The average degree \bar{d} (left panel) and the average output \bar{q} (right panel) as a function of the linking cost ζ for varying values of $\vartheta \in \{0.05, 0.1, 0.2\}$ with n = 20 firms and $\tau = \xi = \chi = 1$, $\eta = 300$, $\rho = 1$, b = 1 and $\nu = 20$. Dashed lines indicate the theoretical predictions of Equations (10) and Equation (12) in Proposition 2, respectively.

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model

Data Estimation

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model Data
- Estimatio
- Results

References

Output and degree distributions

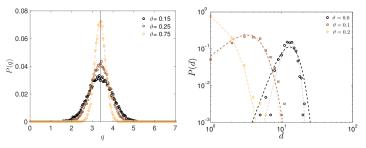


Figure 3: (Left panel) The stationary output distribution P(q) for n = 50, $\eta = 150$, b = 0.5, $\nu = 10$, $\rho = 1$, $\vartheta \in \{0.1, 0.25, 0.75\}$ and $\zeta = 60$. Dashed lines indicate the normal distribution $\mathcal{N}(q^*, \sigma^2)$ of part(i) of Proposition 2). (Right panel) The stationary degree distribution P(k) for the same parameter values. The dashed lines indicate the solution in Equation (11) of Proposition 2.

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model

Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation
- Results

References

Output and degree distributions with Pareto productivity

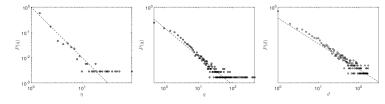


Figure 5: The distribution $P(\eta)$ of η following a Pareto distribution with exponent 2 (left panel), the resulting stationary output distribution P(q) (middle panel) and the degree distribution P(d) (right panel) from a numerical simulation of the stochastic process of Definition 1. Dashed lines indicate a power-law fit. Observe that $P(\eta)$ and P(q) exhibit a power law tail with the same exponent, consistent with part (iii) of Proposition 3. The parameters used are n = 350, $\nu = 0.95$, b = 0.75, $\rho = 2$ and $\zeta = 75$.

Welfare

Hsieh, König, and Liu (2017)

Network formation

Paul Schrimpf

Model

- Data
- Estimati

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an-Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data Estimation

References

 Proposition 5: with homogenous firms, efficient G is either complete or empty depending on ζ (link cost)

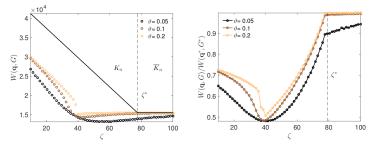


Figure 6: (Left panel) Welfare $W(\mathbf{q}, G)$ as a function of the linking cost ζ for varying values of $\vartheta \in \{0.05, 0.1, 0.2\}$ with n = 20 firms and $\tau = \xi = \chi = 1$, $\eta = 300$, $\rho = 1$, b = 1 and $\nu = 20$. The solid line indicates welfare in the efficient graph of Proposition 4 (which is either complete or empty). (Right panel) The ratio of welfare relative to welfare in the efficient graph.

Paul Schrimpf

Data

Hsieh, König, and Liu (2017) Model Data Estimation

Atalay et al (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar an-Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data
- Estimation
- Results

References

- CATI and SDC alliance database for R&D collaborations
- Compustat and Orbis for other firm information
- PATSTAT for patents

Paul Schrimpf

Hsieh, König, and Liu (2017

Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

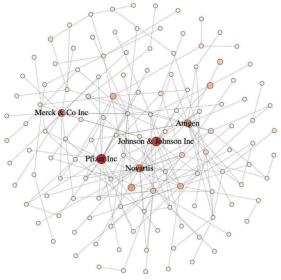


Figure 7: The largest connected component in the observed network of R&D collaborations for firms in the sector SIC-28 in the year 2006. The shade and size of a node indicates its R&D expenditures. The five largest firms in terms of their R&D expenditures are mentioned in the graph.

R&D Network

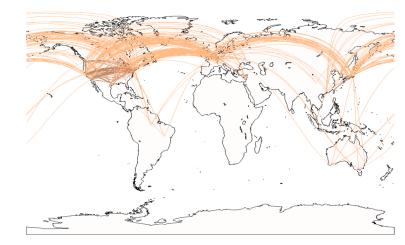


Figure F.8: The locations (at the city level) and collaborations of the firms in the combined CATI-SDC database.

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017) Model Data

Estimatio Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and (ackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Paul Schrimpf

Data

Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar a Jackson (2013)

Lee and Fong (201

Ho and Le

Model

Data

Estimatio

Results

References

Table 1: Descriptive statistics	s.,
---------------------------------	-----

		Log R&D Expenditure			F	Productivity			Log # of Patents		
Sample	# of firms	mean	min	max	mean	min	max	mean	min	max	
Full	1201	9.6496	2.5210	15.2470	1.6171	0.0002	20.2452	4.9320	0.0000	11.8726	
SIC-28	351	9.6416	3.2109	15.2470	1.3385	0.0002	10.1108	4.7711	0.0000	11.8014	
SIC-281	27	9.5288	7.5464	11.2266	2.0951	0.8124	4.5133	6.9610	2.3026	9.9499	
SIC-282	22	10.1250	7.5123	12.1022	2.4637	0.1667	5.7551	6.7015	2.9957	10.3031	
SIC-283	259	9.4797	3.2109	15.2470	1.0326	0.0002	6.5232	4.1962	0.0000	10.8752	
SIC-284	12	11.0216	8.7933	13.2439	1.4869	0.6021	2.6405	7.7903	3.9890	10.9748	
SIC-285	5	11.0548	9.8144	13.2205	1.5160	1.2591	1.7099	8.4910	7.1325	10.3017	
SIC-286	8	9.3278	6.0924	11.3144	3.9443	1.1249	10.1108	3.6924	0.6931	6.6174	
SIC-287	8	8.8004	6.1510	12.8862	1.8069	0.0672	2.7076	3.9510	0.6931	10.6792	
SIC-289	10	9.0683	6.2913	10.5094	1.5494	0.0760	2.9324	5.3012	0.6931	9.8807	

Note: The logarithm of a firm's R&D expenditures (by thousand dollars) measures its R&D effort. A Firm's productivity is measured by the ratio of sales to employment. The logarithm of the number of patents is used as a control variable in the linking cost function [cf. e.g. Hanaki et al., 2010].

Paul Schrimpf

Data

Atalay et al.

Background

Model

Data

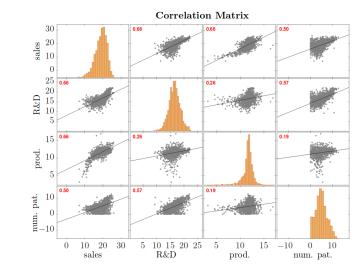


Figure F.5: Correlation scatter plot for sales, productivity, R&D expenditures and the patent stocks.

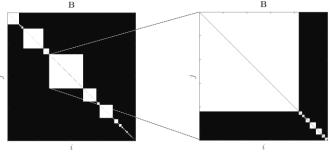
Paul Schrimpf

Hsieh, König, and Liu (2017)

Data Estimatio

Results

Atalay et al (2011)


Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

	20	33	87	37	73	35	38	36	28
20	0	0	1	1	0	0	1	0	3
33	0	1	0	4	0	2	1	3	1
87	1	0	0	0	1	2	4	3	14
37	1	4	0	17	5	2	7	2	1
73	0	0	1	5	4	17	7	17	6
35	0	2	2	2	17	9	5	26	2
38	1	1	4	7	7	5	6	13	25
36	0	3	3	2	17	26	13	29	3
28	3	1	14	1	6	2	25	3	141

	281	282	283	284	285	286	287	289
281	1	2	13	0	0	0	0	0
282	2	1	1	0	0	0	0	0
283	13	1	121	0	2	0	0	0
284	0	0	0	0	0	0	0	0
285	0	0	2	0	0	0	0	0
286	0	0	0	0	0	0	0	0
287	0	0	0	0	0	0	0	0
289	0	0	0	0	0	0	0	0

Figure 8: (Top left panel) The empirical competition matrix **B** across all 2-digit SIC sectors. The largest sector is the SIC-28 sector with 351 firms, which comprises 29.22% of all firms in the sample. (Top right panel) The empirical competition matrix **B** across all 3-digit SIC sectors within the SIC-28 sector. The largest sector is the SIC-283 "drugs" sector with 259 firms, which comprises 73.78% of all firms in the SIC-28 sector. (Bottom left panel) The number of R&D collaborations across all 2-digit SIC sectors. The sector SIC-28 has 141 within sector B&D collaborations. (Bottom right panel) The number of R&D collaborations within the sector SIC-28. The

Estimation

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model Data

Estimation

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

• MLE using stationary distribution?

$$\mu^{\vartheta}(q,G) = \frac{e^{\vartheta(\Phi(q,G) - m\log(\xi/\tau))}}{\sum_{G' \in \mathcal{G}^n} \int_{\mathcal{Q}^n} e^{\vartheta(\Phi(q,G') - m'\log(\xi/\tau))} dq'}$$

no, denominator too hard to compute

- Use MCMC instead
 - Still difficult, reports results from 3 different algorithms

Paul Schrimpf

Hsieh, König, and Liu (2017

Model

Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

Estimates

Table 2: Estimation results of the full sample and the SIC-28 sector

T2 11

010 00

		Full sample	SI	C-28 subsam	ple
		LP	LP	DMH	AEX
R&D Spillover	(ρ)	0.0355^{***}	0.0386^{***}	0.0408^{***}	0.0458^{***}
-		(0.0008)	(0.0015)	(0.0021)	(0.0010)
Substitutability	(b)	0.0002***	0.0001**	0.0002***	0.0002***
		(0.0000)	(0.0001)	(0.0001)	(0.0000)
Prod.	(δ_1)	0.2099***	0.4475^{***}	0.3769***	0.3787***
		(0.0127)	(0.0457)	(0.0509)	(0.0424)
Sector FE	(δ_2)	Yes	Yes	Yes	Yes
Linking Cost					
Constant	(γ_0)	13.1415***	13.2627***	14.4023***	14.3366**
		(0.1336)	(0.3507)	(1.1547)	(0.1180)
Same Sector	(γ_1)	-2.1458^{***}	-1.9317^{***}	-1.9648^{***}	-1.8579^{***}
		(0.1053)	(0.2551)	(0.5749)	(0.3972)
Same Country	(γ_2)	-0.8841^{***}	-0.4186^{***}	-0.6359^{*}	-0.6555***
		(0.1030)	(0.1591)	(0.3903)	(0.1907)
Diff-in-Prod.	(γ_3)	0.0231	-1.2698^{***}	-1.4300^{**}	-1.3255^{***}
		(0.0554)	(0.2937)	(0.6450)	(0.1436)
Diff-in-Prod. Sq.	(γ_4)	-0.0014	0.3276^{***}	0.4023^{**}	0.4505^{***}
		(0.0044)	(0.0876)	(0.1910)	(0.0563)
Patents	(γ_5)	-0.0943^{***}	-0.0783^{***}	-0.1176^{**}	-0.0410**
		(0.0053)	(0.0150)	(0.0562)	(0.0210)
Sample size		1,201		351	

Note: The dependent variable is log R&D expenditures. The parameters $\boldsymbol{\theta} = (\rho, b, \delta^{\top}, \gamma^{\top}, \mathbf{x})$ correspond to Equation (24), where $\psi_{ij} = \gamma^{\top} c_{ij}$ and $\eta_i = \mathbf{X}, \delta$ (cf. Section 3.2). We make 50,000 MCMC draws where we drop the first 2,000 draws during a burn-in phase and keep every 20th of the remaining draws to calculate the posterior mean (as point estimates) and posterior standard deviation (shown

Paul Schrimpf

Patent Similarity

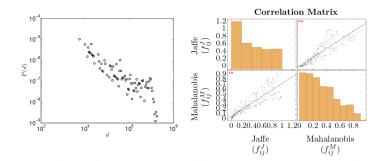


Figure F.9: (Left panel) The distance distribution, P(d), across collaborating firms in the combined CATI-SDC database. (Right panel) Correlation plot for the Jaffe (f_{ij}^J) and the Mahalanobis (f_{ij}^M) technology proximity metrics across pairs of firms $1 \le i, j \le n$.

and Liu (20 Model Data Estimation

Results

Atalay et a (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data Estimation

Results

References

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model
- Data

Results

Atalay et al (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Heterogeneous spillovers

Table 3: Homogeneous versus heterogeneous spillovers

	Homog	Homogeneous		ffe	Mahalanobis		
	DMH	Logit	DMH	Logit	DMH	Logit	
(ρ)	0.0396***	0.0356***	0.0524***	0.0070	0.0275***	0.0038** (0.0019)	
(b)	0.0002***	-	0.0001***	-	0.0001***	-	
(δ_1)	(0.0001) 0.3696^{***}	-	(0.0001) 0.4367^{***}	-	(0.0001) 0.4372^{***}	-	
(8-)	(0.0526) Voc		(0.0556) Voc		(0.0612) Ver		
	(b) (δ_1)	$\begin{tabular}{ c c c c c }\hline \hline DMH \\ \hline (\rho) & 0.0396^{***} \\ & (0.0019) \\ \hline (b) & 0.0002^{****} \\ & (0.0001) \\ \hline (\delta_1) & 0.3696^{***} \\ & (0.0526) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c }\hline \hline DMH & Logit \\\hline \hline (ρ) & 0.0396^{***} & 0.0356^{***} \\\hline (0.0019) & (0.0030) \\\hline (b) & 0.0002^{***} & - \\\hline (0.0001) & - \\\hline (δ_1) & 0.3696^{***} & - \\\hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline DMH & $Logit$ & DMH \\ \hline $(\rho$)$ & 0.0396^{***} & 0.0356^{***} & 0.0524^{***} \\ (0.0019) & (0.0030) & (0.0090) \\ \hline $(b$)$ & 0.002^{***} & $-$ & 0.0001^{***} \\ (0.001) & $-$ & (0.001) \\ \hline $(\delta_1$)$ & 0.3696^{***} & $-$ & 0.4367^{**} \\ \hline (0.0526) & (0.0556) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Linking Cost

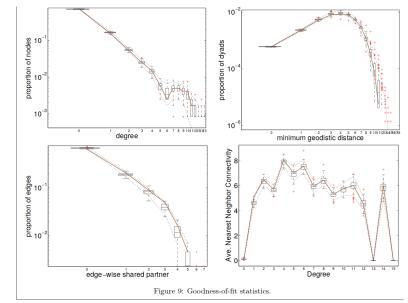
Constant	(γ_0)	13.5645*** (0.6067)	12.8064*** (0.5075)	13.5182*** (0.2966)	11.4667^{***} (0.4764)	14.3226*** (0.5195)	11.4501*** (0.4859)
Same Sector	(γ_1)	-2.0559***	-1.7129^{***}	-1.8892***	-2.0271***	-2.8818***	-2.0253***
Same Country	(γ_2)	(0.4247) -0.3782	(0.2681) -0.3677**	(0.3261) -0.6871***	(0.2547) -0.4679***	(0.7106) - 0.9134^{***}	(0.2609) - 0.4674^{***}
Diff-in-Prod.	(γ_3)	(0.3267) -0.8575^*	(0.1781) -1.2679***	(0.3082) -3.3302***	(0.1740) -1.3288***	(0.3905) -3.1080^{***}	(0.1669) -1.3145***
Diff-in-Prod. Sq.	(γ_4)	(0.3881) 0.2655^{**}	(0.3116) 0.3046^{**}	(0.4379) 0.9665^{***}	(0.2981) 0.3187^{***}	(0.6717) 0.9984^{***}	(0.3106) 0.3167^{***}
Patents	,	(0.1270) -0.0909**	(0.0936) -0.0384	(0.1916) -0.2128***	(0.0889) -0.2340***	(0.2880) -0.1957***	(0.0929) -0.2310***
	(γ_5)	(0.0449)	(0.0295)	(0.0336)	(0.0269)	(0.0534)	(0.0270)
Cyclic Triangles	(\varkappa)	-1.6277*** (0.4095)	-1.5486 ^{***} (0.1753)	-3.5815^{***} (0.3898)	-2.2637*** (0.1587)	-3.0555*** (0.4338)	-2.2509*** (0.1537)

Note: The dependent variable is log R&D expenditures. The parameters $\boldsymbol{\theta} = (\rho, b, \boldsymbol{\delta}^\top, \boldsymbol{\gamma}^\top, \varkappa)$ correspond to Equation (24), where $\psi_{ij} = \boldsymbol{\gamma}^\top c_{ij}$, $\varphi_{ij} = \varkappa t_{ij}$ and $\eta_i = \mathbf{X}_i \boldsymbol{\delta}$ (cf. Section 3.2). The estimation results are based on 351 firms from the SIC-28 sector. We make 50,000 MCMC draws where we drop the first 2,000 draws during a burn-in phase and keep every 20th of the remaining draws to calculate the posterior mean (as point estimates) and posterior standard deviation (shown in parenthesis). All cases pass the convergence

Paul Schrimpf

Hsieh, König, and Liu (2017

- Model Data Estimation
- Results


Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Model fit

Paul Schrimpf

Key firms

Hsieh, König, and Liu (2017)

Model Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

Firm	Mkt. Sh. $[\%]^{\rm a}$	Patents	Degree	$\Delta W~[\%]^{\rm b}$	$\Delta W_{\rm F}~[\%]^{\rm c}$	$\Delta W_{\rm N} \ [\%]^{\rm d}$	SIC	Rank
Pfizer Inc.	2.7679	78061	15	-1.8764	-1.7943	-0.3843	283	1
Novartis	2.0691	18924	15	-1.7369	-1.8271	-0.3273	283	2
Amgen	0.8193	6960	13	-1.6272	-1.4240	-0.4753	283	3
Bayer	3.8340	133433	10	-1.3781	-1.2910	-0.3445	280	4
Merck & Co. Inc.	1.2999	52847	10	-1.0182	-1.1747	-0.2892	283	5
Dyax Corp.	0.0007	227	6	-0.7709	-0.6660	-0.3289	283	6
Medarex Inc.	0.0028	168	9	-0.7452	-0.8749	-0.3847	283	7
Exelixis	0.0057	58	7	-0.7293	-0.8603	-0.3686	283	8
Xoma	0.0017	648	7	-0.6039	-0.6863	-0.2254	283	9
Genzyme Corp.	0.1830	1116	3	-0.5904	-0.2510	-0.2987	283	10
Johnson & Johnson Inc.	3.0547	1212	7	-0.5368	-0.8556	-0.3520	283	11
Abbott Lab. Inc.	1.2907	11160	3	-0.5162	-0.1867	-0.3543	283	12
Infinity Pharm. Inc.	0.0011	44	4	-0.4623	-0.5155	-0.2724	283	13
Curagen	0.0023	174	3	-0.4335	-0.4388	-0.3742	283	14
Cell Genesys Inc.	0.0001	236	5	-0.4133	-0.4629	-0.2450	283	15
Solvay SA	1.2445	22689	3	-0.4048	-0.3283	-0.2480	280	16
Takeda Pharm. Co. Ltd.	0.6445	19460	7	-0.3934	-0.7817	-0.3818	283	17
Daiichi Sankyo Co. Ltd.	0.4590	14	5	-0.3691	-0.5581	-0.3377	283	18
Maxygen	0.0014	252	3	-0.3455	-0.3013	-0.2268	283	19
Compugen Ltd.	0.0000	246	5	-0.3130	-0.5251	-0.3202	283	20

Table 4: Key player ranking for firms in the chemicals and allied products sector (SIC-28).

^a Market share in the primary 3-digit SIC sector in which the firm is operating.

^b The relative welfare loss due to exit of a firm *i* is computed as $\Delta W = (\mathbb{E}_{\mu^{o}}[W_{-i}(\mathbf{q}, G)] - W(\mathbf{q}^{obs}, G^{obs})) / W(\mathbf{q}^{obs}, G^{obs})$, where \mathbf{q}^{obs} and G^{obs} denote the observed R&D expenditures and network, respectively.

 c $\Delta W_{\rm F}$ denotes the relative welfare loss due to exit of a firm assuming a fixed network of R&D collaborations.

 $d \overline{\Delta W_N}$ denotes the relative welfare loss due to exit of a firm in the absence of a network of R&D collaborations.

Paul Schrimpf

and Liu (2017)

1	Model		
ļ	Data		
1			

Results

Atalay et al.

Background

- Ho and Lee (2019)

Mergers

Firm i	Firm j	Mkt. Sh. <i>i</i> [%] ^a	Mkt. Sh. j [%]	Pat. i	Pat. j	d_i	d_j	$\Delta W ~ [\%]^{b}$	$\Delta W_{\rm F}$ [%] ^c	$\Delta W_{\rm N} \ [\%]^{\rm d}$	SIC	Ran
			w	ELFAR	E LOSS							
Daiichi Sankyo Co. Ltd.	Schering-Plough Corp.	0.4590	0.6057	14	52847	5	1	-0.6036	0.0476	-0.2386	283	1
MorphoSys AG	Daiichi Sankyo Co. Ltd.	0.0038	0.4590	20	14	4	5	-0.5976	0.0132	-0.3948	283	2
Vical Inc.	Cephalon	0.0008	0.1005	170	810	1	1	-0.5639	0.3903	-0.3111	283	- 3
Galapagos NV	Medarex Inc.	0.0025	0.0028	30	168	2	9	-0.5581	0.1017	-0.3253	283	4
Galapagos NV	Coley Pharm. Group Inc.	0.0025	0.0012	30	125	2	1	-0.5409	0.2329	-0.3935	283	5
Infinity Pharm. Inc.	Alnylam Pharm. Inc.	0.0011	0.0015	44	114	4	3	-0.5339	0.0484	-0.3309	283	6
Icagen	Biosite Inc.	0.0005	0.0177	423	182	1	3	-0.5261	0.3587	-0.3244	283	7
Clinical Data Inc.	Renovis	0.0037	0.0006	9	58	4	1	-0.5179	0.3005	-0.3890	283	8
Clinical Data Inc.	Curagen	0.0037	0.0023	9	174	-4	3	-0.5134	0.0108	-0.3450	283	9
EntreMed Inc.	AVI BioPharma Inc.	0.0004	0.0000	62	67	3	1	-0.5120	0.2734	-0.3213	283	10
			w	ELFAR	E GAIN							
Isis Pharm. Inc.	Takeda Pharm. Co. Ltd.	0.0014	0.6445	4472	19460	4	7	0.8643	0.3406	-0.3517	283	1
Cell Genesys Inc.	Pfizer Inc.	0.0001	2.7679	236	78061	5	15	0.8636	0.6395	-0.3692	283	2
Exelixis	Pfizer Inc.	0.0057	2.7679	58	78061	7	15	0.8235	0.5397	-0.4127	283	3
Dyax Corp	Pfizer Inc.	0.0007	2.7679	227	78061	6	15	0.7717	0.5548	-0.4120	283	4
Bristol-Myers Squibb Co.	Novartis	1.0287	2.0691	22312	18924	6	15	0.7696	0.4889	-0.2978	283	5
Exelixis	Takeda Pharm. Co. Ltd.	0.0057	0.6445	58	19460	7	7	0.7661	0.5511	-0.3254	283	- 6
Exelixis	Novartis	0.0057	2.0691	58	18924	7	15	0.7637	0.5130	-0.3872	283	- 1
Genzyme Corp.	Pfizer Inc.	0.1830	2.7679	1116	78061	3	15	0.7441	0.4206	-0.3572	283	8
Medarex Inc.	Allergan Inc.	0.0028	0.1759	168	6154	9	3	0.7441	0.3586	-0.2983	283	5
Medarex Inc.	Amgen	0.0028	0.8193	168	6960	9	13	0.7411	0.7776	-0.2699	283	1

^a Market share in the primary 3-digit sector in which the firm is operating.

There is a prime of the prime observed R&D expenditures and network, respectively.

 $^{\circ} \Delta W_{P}$ denotes the relative welfare change due to a merger of firms assuming a fixed network of R&D collaborations.

^d ΔW_N denotes the relative welfare change due to a merger of firms in the absence of a network of R&D collaborations.

Paul Schrimpf

Hsieh, König,

Model Data Estimatio

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model
- Data
- Estimation
- Results

References

Collaboration subsidies

Table 6:	Subsidy	ranking for	firms in	the chemicals	and allied	products sector	(SIC-28).
----------	---------	-------------	----------	---------------	------------	-----------------	-----------

Firm <i>i</i>	Firm j	Mkt. Sh. $i~[\%]^{\rm a}$	Mkt. Sh. $j~[\%]$	Pat. i	Pat. j	d_i	d_j	$\Delta W ~ [\%]^{\rm b}$	$\Delta W_{\rm F} \ [\%]^{\rm c}$	SIC i	SIC j	Rank
Dynavax Technologies	Shionogi & Co. Ltd.	0.0003	0.0986	162	10156	0	0	0.7646	0.0509	283	283	1
Ar-Qule	Kemira Oy.	0.0004	0.3340	43	510	1	0	0.7622	0.0252	283	280	2
Indevus Pharm. Inc.	Solvay SA	0.0029	1.2445	37	22689	0	3	0.7603	0.0713	283	280	3
Nippon Kayaku Co. Ltd.	Koninklijke DSM NV	0.1342	1.1059	4398	4674	0	1	0.7543	0.0369	280	280	4
Encysive Pharm. Inc.	Johnson & Johnson Inc.	0.0011	3.0547	280	1212	0	7	0.7466	0.1111	283	283	5
Kaken Pharm. Co. Ltd.	Elancorp	0.0377	0.0322	821	462	0	3	0.7315	0.0986	283	283	6
Tsumura & Co.	Syngenta AG	0.0451	4.1430	23	5397	0	0	0.7215	-0.0188	283	287	7
NOF Corp.	Alkermes Inc.	0.1361	0.0138	431	31	0	0	0.7166	0.0132	280	283	8
Toagosei Co. Ltd.	Mitsubishi Tanabe Pharma Corp.	0.1412	0.0877	771	5296	0	1	0.7160	-0.0004	280	283	9
DOV Pharm. Inc.	Mochida Pharm. Co.	0.0015	0.0366	80	575	1	0	0.7158	0.0188	283	283	10
Geron	Elancorp	0.0002	0.0322	240	462	1	3	0.7146	0.0039	283	283	11
Tanox Inc.	PPG Industries Inc.	0.0032	7.5437	139	29784	0	0	0.7145	0.0283	283	285	12
Gedeon Richter	Dade Behring Inc.	0.0572	0.0999	11115	152	0	0	0.7103	0.0173	283	283	13
Nippon Kayaku Co. Ltd.	Valeant Pharm.	0.1342	0.0521	4398	312	0	0	0.7087	0.0695	280	283	14
Geron	Akzo Nobel NV	0.0002	11.7496	240	11366	1	2	0.7080	0.0114	283	285	15
Rigel Pharm. Inc.	Kyorin Holdings Inc.	0.0019	0.0381	259	2986	1	0	0.7074	0.0319	283	283	16
Indevus Pharm. Inc.	MannKind Corporation	0.0029	0.0000	37	32	0	0	0.7064	0.0144	283	283	17
Biosite Inc.	Toyama Chemical Co. Ltd.	0.0177	0.0083	182	2320	1	0	0.7062	-0.0179	283	283	18
Tsumura & Co	Alnylam Pharm. Inc.	0.0451	0.0015	23	114	0	3	0.7053	0.0222	283	283	19
Gen-Probe Inc.	Mitsubishi Tanabe Pharma Corp.	0.0201	0.0877	1179	5296	1	1	0.7046	0.0101	283	283	20

^a Market share in the primary 3-digit sector in which the firm is operating.

Some value in the use of the state of the s

 $^{\circ}\Delta W_F$ denotes the relative welfare loss due to a merger of firms assuming a fixed network of R&D collaborations.

Paul Schrimpf

Hsieh, König, and Liu (2017) Model Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Section 2

Atalay et al. (2011)

Paul Schrimpf

Hsieh, König, and Liu (2017) ^{Model} Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model Data

Estimation

Results

References

Atalay et al. (2011): Network structure of production

- Model of buyer-supplier network of US firms
- Common features of observed social & economic networks: (see Jackson (2010))
 - Scale-free: degree distribution is Pareto: $P(d) = cd^{-\gamma}$ i.e. $\log P(d)$ is linear function of $\log d$.
 - Small worlds: the diameter & average path length tends to be small even for a large number of nodes (e.g. 6 degrees of Kevin Bacon; Erd os number)

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimatio
- Results

Atalay et al. (2011)

Background

Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model

Data

Estimation

Results

References

Preferential attachment 1

- Growing random network model that is scale-free and has small worlds
- Model: nodes born over time and indexed by date of birth
 - Begin with *m* nodes fully connnected
 - Time *t* one node added and forms *m* connections with existing nodes, connects to node *i* with probability $\frac{d_i(t)}{\sum_i d_j(t)} = \frac{d_i(t)}{2tm}$

Paul Schrimpf

Hsieh, König,

- Model Data
- Results

Atalay et al. (2011)

Background

Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model
- Data
- Estimatio
- Results

References

Mean-field approximation

- Solving for degree distribution: "mean-field approximation"
 - P(*i* gets new link) = $m \frac{d_i(t)}{2tm} = \frac{d_i(t)}{2t}$
 - Approximate time as continuous instead of discrete

$$\frac{d}{dt}d_i(t)=\frac{d_i(t)}{2t}$$

and $d_i(1) = m$, implies

$$d_i(t) = m\left(\frac{t}{i}\right)^{1/2}$$

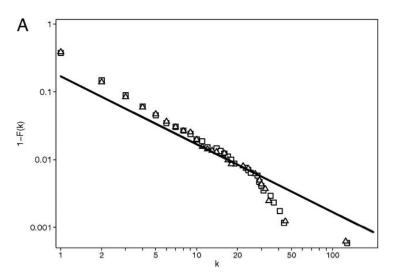
• Degree of older nodes > degree of younger nodes, at time t node born at time $i = t \left(\frac{m}{d}\right)^2$ has degree d, so $F_t(d) = 1 - m^2 d^{-2}$, $P_t(d) = m^2 d^{-3}$

Paul Schrimpf

Hsieh, König and Liu (201 ^{Model} Data Estimation Results

Atalay et al. (2011)

Background Model Estimation


Strategic network formation

(2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

Observed degree distribution

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Data
- Estimatic

Atalay et al. (2011)

Background Model

Strategic network formation

- Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data
- Estimation
- Results

References

Model overview

- Directed network of buyers and suppliers
- Mix of preferential attachment and random attachment
- Adds node death & reattachment of survivors
- Better incorporate features of the actual firm network: firms often go out of business, and many suppliers actively prefer to work with less-connected downstream firms because of product specialization and long-term contracting issues

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Estimatio

Atalay et al. (2011)

- Background Model
- Estimation

Strategic network formation

- Christakis et al. (2010)
- Chandrasekhar and Jackson (2013)
- Lee and Fong (2013
- Ho and Lee (2019)
- Model
- Data
- Estimation
- References

Notation:

- N(t) firms at time t
- n(k, t) firms with in-degree k at time t
- $m(t) = \frac{\sum_{k} kn(k,t)}{N(t)}$ average in-degree
- Each period:
 - **1** Exit: each firm exists with probability q; destroys q(2-q)N(t)m(t) edges, q(1-q)N(t)m(t) of which have receiving vertex survive
 - 2 Reconnection: surviving firms whose connections were lost due to exit reconnect; q(1-q)N(t)m(t) reconnections to make
 - *r* uniformly at random
 - 1 r by preferential attachment
 - 3 Entry:
- (g + q)N(t) firms enter, each form m(t) edges
 - $\delta(1-r)$ by preferential attachment to existing firms
 - $r\delta$ randomly to existing firms
 - 1 δ randomly to other entrants

Model

Paul Schrimpf

Hsieh, König, and Liu (2017) Model

- Data Estimatio
- Results

Atalay et al. (2011)

Backgrour Model

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model
- Data
- Estimatio
- Results

References

Mean-field approximation 1

$$\frac{\partial}{\partial t}n(k,t) + \frac{\partial}{\partial k}[n(k,t)\gamma(k,t)] = \beta(k,t)N(t)(q+g) - qn(k,t)$$

- $\gamma(k, t) =$ in-degree growth rate
 - = $\frac{dk}{dt}$ = $qr(m(t) k) + \frac{\delta(k+r(m(t)-k))(q+g)}{1-q}$
- $\beta(k, t) =$ in-degree distribution of entering vertices
 - = binomial $\left((g+q)N(t)(1-\delta)m(t), \frac{1}{N(t)(g+q)}\right)$
 - $\approx \frac{1}{m(t)(1-\delta)} e^{-\frac{k}{m(t)(1-\delta)}}$ (exponential)
- Let $p(k, t) = \frac{n(k,t)}{N(t)}$,

$$\frac{\partial p(k,t)}{\partial t} + \frac{\partial}{\partial k} [p(k,t)\gamma(k,t)] = \beta(k,t)(q+g) - qp(k,t)$$

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Poculte

Atalay et al.

Background Model

Strategic network formation

Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model

Data

Estimatio

Results

References

Mean-field approximation 2

• Solve for stead-state degree distribution, p(k)

$$\frac{\partial}{\partial k}[p(k)\gamma] = \beta(k)(q+g) - qp(k)$$

so

$$p(k) = \lambda (k+R)^{-1-S} \left(\Gamma[1+S, R/(m(1-\delta))] - \Gamma[1+S, (R+k)/(m(1-\delta))] \right)$$

where *R*, *S* and λ are functions of δ , *q*, *g*, *m*, and *r*

Paul Schrimpf

Data

Hsieh, König, and Liu (2017) Model

Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data
- Estimation
- Results

- Data yearly firm-level data from Compustat
- 1979-2007 publicly listed firms
- Link = major customer = firm that purchases ≥10% of seller's revenue

Paul Schrimpf

Hsieh, König, and Liu (2017) ^{Model} Data

Estimatio

Atalay et al. (2011)

Background Model Estimation

Strategic network formatior

Christakis et al. (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019) Model

Estimatio

Results

References

Table 1. Top 10 firms from 1979 to 1983 and from 2003 to 2007

	1979–1983		2003–2007		
Rank	Firm	k	Firm	k	
1	GM	86.4	Wal-Mart	129.8	
2	Sears	50.0	GM	42.0	
3	Ford	48.2	Cardinal Health	37.4	
4	IBM	33.4	Home Depot	33.0	
5	JCPenney	26.4	Ford	31.2	
6	Chrysler	20.2	Hewlett-Packard	30.8	
7	GE	19.0	Daimler-AG	30.8	
8	AT&T	18.2	AmerisourceBergen	30.6	
9	Boeing	15.0	McKesson	28.8	
10	McDonnell Douglas	12.8	Target	25.8	

k, number of suppliers in the average year.

Atalay et al.

49 👽 im 🗱 08:14 🖌

Estimation

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimati
- Results

Atalay et al. (2011)

- Background Model Estimation
- Strategic network
- formation
- (2010) Chandrasekhar ar Jackson (2013) Lee and Fong (201 Ho and Lee (2019)
- Model
- Data
- Estimatio
- Results

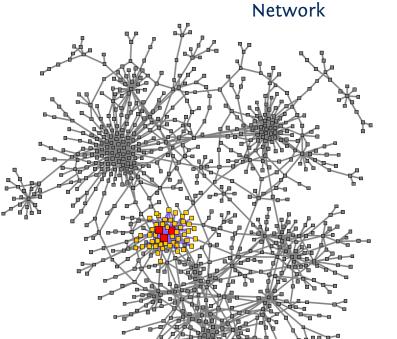
References

5 parameters

- q = exit rate = empirical average = 0.24
- *m* = edges per vertex = 1.06
- δ = portion of new vertices to existing firms = 0.75
- *g* = growth rate of number of firms = 0.04
- r = fraction of edges assigned randomly estimated by MLE for probability a new link among surviving vertices given in-degree = 0.18
- Not fitting CDF directly

Paul Schrimpf

Hsieh, König, and Liu (2017)


Model Data Estimatio Results

Atalay et al.

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

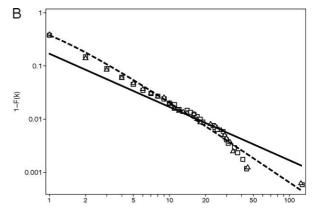
Paul Schrimpf

Hsieh, König, and Liu (2017)

Model Data Estimatio

Results

Atalay et al. (2011)


Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

Fit

Paul Schrimpf

Hsieh, König, and Liu (2017 Model Data Estimation

Atalay et

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Section 3

Strategic network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Estimatio

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

- Christakis et al. (2010)
- Lee and Fong (2013)
- Chandrasekhar and Jackson (2013)
- Leung (2013)
- Sheng (2012)
- Graham (2014a), Graham (2014b)

Paul Schrimpf

Hsieh, König, and Liu (2017) ^{Model} Data Estimation

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010)

Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

Christakis et al. (2010)

- Tractable empirical model of network formation
- Estimable from data on a single network
- Bayesian estimation
- Applied to social network of high school students

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Estimat
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010)
- Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

References

• Sequential: N nodes, T periods

- Begin with no links
- Each period two nodes meet and have opportunity to form a link
- Payoff of *i* from linking with *j* at time *t*

Node characteristics link characteristics

Link formed if

$$g(U_i(j|X, C, G_{t-1}, t), U_j(i|X, C, G_{t-1}, t)) > 0$$

• Myopic behavior:

$$U_i(j|X, C, G_{t-1}, t) = U_i(j|X, C, G_{t-1})$$

- Individuals do no have to take expectation over future links
- Avoids multiple equilibria & computational difficulties

Model

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010)

Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Empirical specification

• Preferences:

$$U_i(j|X, C, G_{t-1}) = \beta_0 + \beta'_1 x_j - (x_i - x_j)' \Omega(x_i - x_j) + \alpha_1 d_{jt} + \alpha_2 d_{jt}^2 + \alpha_3 d(i, j; G_{t-1}) + \delta c_{ij} + \epsilon_{ij}$$

Non-transferable:

$$g(u_i, u_j) = \mathbf{1}\{u_i \ge \mathbf{0} \text{ fr } u_j \ge \mathbf{0}\}$$

- $\epsilon_{ij} \sim \text{logistic, independent}$
- Sequence of meetings, *M*: assume T = N(N 1)/2, each potential pair meets exactly once, all sequences equally likely
- Parameter meanings:
 - β individual characteristics
 - Ω captures homophily
 - *α* network characteristics
 - δ pair characteristics

Estimation

- Bayesian
- Likelihood

 $\mathcal{L}(\theta|G, X, C) = \mathsf{P}(G|X, C; \theta) = \sum_{M \in \mathbb{M}} \mathsf{P}(M|X, C; \theta) \mathsf{P}(G|M, X, C; \theta)$

- $P(G|M, X, C; \theta)$ is product of logit probabilities
- $|\mathbb{M}| = (N(N-1)/2)!$ is too large for MLE
- Compute posterior using MCMC Metropolis-Hastings with data augmentation
 - Draw $\theta_k | M_k$ from $P(\theta | M_k, G, X, C) \propto P(G | M_k, X, C, \theta) P(\theta)$
 - Draw $M_{k+1}|\theta_k$ from $P(M|\theta_k, G, X, C) \propto P(G|M_k, X, C, \theta)P(M)$
- Data from a single large network
 - Properties of estimator as $N \rightarrow \infty$ unknown
 - Chandrasekhar and Jackson (2013), Leung (2013) also have data from a single network and show consistency of their estimators (but models differ)

Network formation

Paul Schrimpf

Hsieh, König and Liu (2017

Model Data

Estimati

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010)

Chandrasekhar an Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data Estimation Results

Paul Schrimpf

Data

Hsieh, König, and Liu (2017) Model Data

Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010)

Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

- Friendship network in single high school of 669 students, 1541 links
- From AddHealth data set

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Summary statistics

Table 1: SUMMARY STATISTICS OF STUDENT CHARACTERISTICS (N=669)

Characteristic	Mean	Standard Deviation	median	Min	Max
Sex (0 Male, 1 Female)	0.48	(0.50)	0	0	1
Grade	10.7	(1.1)	11.0	8.0	13.0
Age	17.3	(1.3)	17.3	13.3	21.3
Sports Participation	0.49	(0.50)	0	0	1
Number of Friendships	4.6	(3.3)	4	0	18

Paul Schrimpf

Hsieh, König,

Model Data Estimati

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar a Jackson (2013) Lee and Fong (20

Ho and Lee (201 Model

Estimati

Results

References

Summary statistics

Table 2: SUMMARY STATISTICS OF STUDENT PAIR CHARACTERISTICS (223,446 PAIRS)

	All (22	All (223,446) Frie		(1,541)	Not Frie	nds $(221,905)$
Characteristic	Mean	SD	Mean	SD	Mean	SD
# Classes in Common	0.65	1.45	2.13	2.48	0.64	1.44
Abs Diff in Gender	0.50	0.50	0.41	0.49	0.50	0.50
Abs Dif in Grade	1.21	1.01	0.43	0.67	1.22	1.01
Abs Diff in Age	1.43	1.07	0.70	0.64	1.43	1.07
Abs Dif in Sports Participation	0.50	0.50	0.40	0.49	0.50	0.50

Paul Schrimpf

Estimates

Hsieh, König, and Liu (2017) ^{Model} Data			Ν	Estimates Iodel I work Effects	Model I		erior Distribution Model II 5 Network Effects	
Estimation	Parameter	Description	est.	s.e.	mean	s.d.	mean	s.d.
Results								
Atalay et al.	α_1	# of friends of alter	0	_	0	_	-0.14	(0.03)
(2011)	α_2	total $\#$ of friends of alter sq	0	_	0	_	0.004	(0.003)
Background	α_3	degr of sep is two	0	_	0	_	2.66	(0.07)
Model Estimation	α_4	degr of sep is three	0	_	0	-	1.22	(0.07)
Strategic	β_0	intercept	-2.12	(0.05)	-2.11	(0.04)	-2.11	(0.06)
network	β_0 β_1	female	-0.06	(0.03)	-0.06	(0.04)	-0.04	(0.05)
formation	$\beta_1 \\ \beta_2$	alter grade	0.08	(0.04) (0.03)	0.08	(0.04) (0.03)	0.04	(0.03)
Christakis et al.	$\beta_2 \\ \beta_3$	alter age	0.05	(0.03)	0.05	(0.03)	0.05	(0.03)
(2010)	β_3 β_4	participates in sport	0.00 0.10	(0.03) (0.04)	0.09	(0.03)	0.03 0.04	(0.05)
Chandrasekhar and Jackson (2013)	ρ_4	participates in sport	0.10	(0.04)	0.03	(0.04)	0.04	(0.00)
Lee and Fong (2013)	Ω_{11}	diff in sex	0.19	(0.03)	0.19	(0.03)	0.20	(0.03)
Ho and Lee (2019)	Ω_{22}	diff in grades squared	0.17	(0.02)	0.17	(0.01)	0.14	(0.01)
Model	Ω_{33}	diff in age squared	0.10	(0.02)	0.10	(0.01)	0.09	(0.01)
Data	Ω_{44}	diff in sports participation	0.21	(0.03)	0.22	(0.03)	0.19	(0.03)
Estimation	44	and in sports paracipation	0.21	(0.00)	0.22	(0.00)	0.10	(0.00)
Results	δ	# of classes in common	0.14	(0.01)	0.14	(0.01)	0.12	(0.01)
Deferences		// Oommon		(0.04)		()		(0.01)

References

Paul Schrimpf

Hsieh, König,

Model Data Estimatio Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Fit

Table 3: TRIANGLE CENSUS (TOTAL NUMBER OF TRIPLES 49,679,494)

	Actual	Predicted Count		
Triangle Type	Count	Model I	Model II	
		Covariates Only	Network Effects	
No Edges	48,660,171	48,660,484.8	48,697,654.4	
Single Edge	1,011,455	1,010,674.3	$974,\!304.9$	
Two Edges	7,212	8,294.5	7,075.2	
Three Edges	656	40.3	459.6	
Overall Clustering Coefficient	0.083	0.005	0.061	

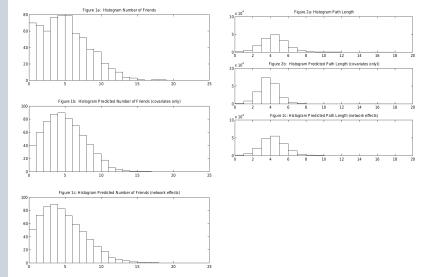
Paul Schrimpf

Fit

Hsieh, König and Liu (2017

Model Data Estimation Results

Atalay et al. (2011)


Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar

Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model Data Estimatio

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formatior

Christakis et al. (2010)

Chandrasekilar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results References

Table 7: FRIENDSHIP RATES BY SEX COMPOSITION

	Ac	tual	Predicted Rate Network Model			
Friendship Type	# of Pairs	Frienship Rate	Current Assignment (Mixed Sex Classrooms)	Counterfactual (Single Sex Classrooms)		
Boy-Boy	61,075	0.0087	0.0082	0.0079		
Boy-Girl	111,650	0.0056	0.0055	0.0037		
Girl-Girl	50,721	0.0076	0.0074	0.0071		

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model
- Data
- Estimat
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al (2010)

Chandrasekhar and Jackson (2013)

- Lee and Fong (2013 Ho and Lee (2019)
- Model
- Data
- Estimatio
- Results

References

Chandrasekhar and Jackson (2013)

- Consistent and tractable network formation model
- Setup nests variant of Christakis et al. (2010) model
- Starting point: exponential random graph (ERGM):
 - Network $g \in G$
 - Vector of statistics S(g)
 - Likelihood:

$$P_{\theta}(g) = rac{e^{ heta S(g)}}{\sum_{g' \in G} e^{ heta S(g')}}$$

- Broad class, can represent any random graph model
- Used in many applications
- Challenges of ERGMs: set of networks, *G* very large, typically estimated by MCMC, but consistency unknown and mixing time exponential in number of nodes
- This paper: propose a related class of models, give conditions for consistent and asymptotically normal estimation, give examples of strategic network formation models that fit into setup

SERGM

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Estimat
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et a (2010)

Chandrasekhar and Jackson (2013)

- Lee and Fong (2013) Ho and Lee (2019) Model
- Estimatio
- Results

- Statistical exponential random graph model
- Write model on space of statistic instead of network

$$P_{\beta,K}(s) = \frac{K(s)e^{\beta s}}{\sum_{s'\in A} K(s')e^{\beta s'}}$$

- Estimate β by MLE or GMM
- Sum in denominator is over space of statistic instead of possible networks
- Sufficient conditions for consistent, asymptotically normal $\hat{\beta}$ (loosely):
 - Statistics are counts, e.g. of links, triangles, stars, etc
 - Graph is not too dense

SUGM

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al (2010)

Chandrasekhar and Jackson (2013)

- Lee and Fong (2013) Ho and Lee (2019) Model Data
- Estimatior
- Results

- Subgraph generation models
- List of subgraph types G_{ℓ}^{n} , $\ell = 1, ..., k$
- Probabilities pⁿ_l of each type
- Formation:
 - Each subnetwork in G_1^n formed with probability p_1^n
 - Repeat for $\ell = 2, ..., n$
- E.g. Erdos-Renyi: $G_1^n =$ all pairs of nodes
- \hat{p}_{ℓ}^n consistent and asymptotically normal if network is sparse

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al (2010)

Chandrasekhar and Jackson (2013)

l

Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Strategic network formation as SUGM

- If payoff depends only on subgraph, then natural
- I.e. if $u_i(g)$ only depends on direct connection or direct connections + friends of friends etc
- E.g. in Christakis et al. (2010)

$$\begin{aligned} J_i(j|X, C, G) &= \beta_0 + \beta_1' x_j - (x_i - x_j)' \Omega(x_i - x_j) + \\ &+ \alpha_1 d_j + \alpha_2 d_j^2 + \delta c_{ij} + \\ &+ \alpha_3 \mathbf{1} \{ d(i, j; G) = 2 \} + \alpha_4 \mathbf{1} \{ d(i, j; G) = 3 \} + \epsilon_{ij} \end{aligned}$$

Paul Schrimpf

Lee and Fong (2013)

and Liu (2017)

- Data Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar ar

Lee and Fong (2013)

- Ho and Lee (2019 Model
- Data
- Estimatio
- Results

- Dynamic network formation model with transfers
- Applicable to bilateral contracting between firms, e.g.
 - Manufacturers & retailers
 - Health insurers & providers
 - Hardware & software

Paul Schrimpf

Model 1

Hsieh, König, and Liu (2017) ^{Model}

Estimation

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

- Ho and Lee (2019) Model Data
- Estimatio
- Results

- Infinite horizon, discrete time
- Network $g \in G$
- Contracts (payments) $t_g = \{t_{ij;g}\}_{ij \in g}$
- Per-period payoffs: $\pi_i(g, t_g)$

Paul Schrimpf

Hsieh, König, and Liu (2017

- Model
- Data
- Estimati
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and Lee (2019) Model

Data

- Estimation
- Results

References

Model: each period

- Start with network $g^{\tau-1}$
- 1 Network formation:
 - Simultaneously announce links *a_i* that want to negotiate, private payoff shock *ε_{ai,i}* received
 Network of negotiations: *q̃*(*a*)
 - If *i* & *j* both announced link, $ij \in \tilde{g}(a)$,
 - Everyeone pays cost $c_i(ilde{g}(a)|g^{ au-1})$

Paul Schrimpf

Hsieh, König, and Liu (2017

- Model
- Data
- Estimati
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar a
- Jackson (2013)
- Lee and Fong (2013)
- Ho and Lee
- Data
- Estimati
- Results

References

Model: each period

- Start with network $g^{\tau-1}$
- 1 Network formation:
 - **1** Simultaneously announce links a_i that want to negotiate, private payoff shock $\epsilon_{a_i,i}$ received
 - **2** Network of negotiations: $\tilde{g}(a)$
 - If *i* & *j* both announced link, $ij \in \tilde{g}(a)$,
 - Everyeone pays cost $c_i(\tilde{g}(a)|g^{\tau-1})$

2 Bargaining:

- **1** Additive payoff shocks η_{ij} observed
- **2** Unstable links $ij \in \tilde{g}$ with no gains from trade (given rest of network) dissolves, repeat until no such pairs remain to get $g^{\tau} \subseteq \tilde{g}$
- **3** Contracts t_g^{τ} determined by Nash bargaining, payoffs realized

$$ar{\pi}_i(\boldsymbol{g}^{ au},\eta,\boldsymbol{t}_{\boldsymbol{g}}^{ au})=\pi_i(\boldsymbol{g}^{ au},\boldsymbol{t}_{\boldsymbol{g}}^{ au})+\sum_{ij\in\boldsymbol{g}^{ au}}\eta_{ij}$$

Paul Schrimpf

Hsieh, König, and Liu (2017

- Data
- Estimati
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and Lee (20: Model

- Data
- Estimatio
- Results

References

Model - dynamics

- Markov strategies σ_i(g, ε_i)
- Conditional choice probabilities $P_i^{\sigma}(a|g) = \int \mathbf{1} \{\sigma_i(g, \epsilon_i) = a\} f(\epsilon_i) d\epsilon_i$
- $\Gamma(g; \eta, V^{\sigma})$ = subnetwork $g' \subseteq g$ such that all pairs stable
- Negotiation network probabilities

$$q_i^{\sigma}(g'|a_i,g) = \sum_{a_{-i}} \prod_{j \neq i} P_j^{\sigma}(a_j|g) I\{\tilde{g}(a) = g'\}$$

Choice-specific value function

$$egin{aligned} &\mu_i^\sigma(a,g) = \sum_{g'} q_i^\sigma(g'|a,g) ig(c_i(g'|g) + \mathbb{E}_\eta ig[ar{\pi}_i(g'',\eta,t_{g''}^\sigma) + eta V_i^\sigma(g'') : & \ &: g'' = \Gamma(g;\eta,V^\sigma) ig] ig) \end{aligned}$$

• Value function

$$V_i^{\sigma}(g) = \int \left(\max_a \epsilon_{a,i} + v_i^{\sigma}(a_i,g) \right) f(\epsilon_i) d\epsilon_i$$

Paul Schrimpf

Hsieh, König,

- Model Data Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and Lee (20) Model

- Estimatio
- Results

References

Model - bargaining

• Nash bargaining:

1

• Surplus of *i* from trading with *j*

$$\Delta S_{i,j}^{\sigma}(g;\eta,\{t,t_{-ij:g}^{\sigma}\}) = \left(\bar{\pi}_i(g,\eta,\{t,t_{-ij:g}\}) + V_i^{\sigma}(g)\right) - \left(\bar{\pi}_i(g-ij,\eta,t_{-ij:g}) + V_i^{\sigma}(g-ij)\right)$$

• Assumes if *ij* do not link, other links unaffected today (but they could be in the future)

$$t_{ij;g}(\eta) \in rg\max_{ ilde{t}} \Delta S^{\sigma}_{i,j}(g;\eta,\{ ilde{t},t^{\sigma}_{-ij;g}\})^{b_{ij}} \Delta S^{\sigma}_{j,i}(g;\eta,\{ ilde{t},t^{\sigma}_{-ij;g}\})^{b_{ji}}$$

- Equilibrium existence from Brouwer's fixed point theorem
- Equilibrium may not be unique

Paul Schrimpf

Hsieh, König, and Liu (2017) Model Data Estimation

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar a Jackson (2013)

Lee and Fong (2013)

- Ho and Lee (201
- Model
- Data
- Estimatio

References

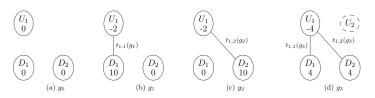


Figure 1: Potential Networks g_0, g_1, g_2, g_3 between firms U_1, D_1, D_2 . Period payoffs contained within circles; $t_{ij}(g_k)$ represents payment between U_i and D_j under network g_k .

- Contracting externalities
- Static model (or equivalently $\beta = 0$) with equal bargaining power
 - $t_{1,j}(g_2) = 6, t_{1,j}(g_3) = 4$
- Dynamic model with $\beta = 0.9$, c() = 1, $var(\epsilon) = \pi^2/8$
 - $t_{1,j}(g_2) \approx 7.6$, $t_{1,j}(g_3) = 4.4$
 - Chance of downstream firms being unlinked for multiple periods lowers value of their outside option

Example

• Distribution of states $[g_0, g_1, g_2, g_3] \approx [.00, .43, .43, .14],$ $P(g_1|g_2) = P(g_2|g_2) \approx 0.8$

Estimation

- Much like dynamic games
- Approaches:
 - Constrained MLE: maximize pseudo-likelihood subject to equilibrium constraints
 - Two-step:
 - Estimate policy functions: using Hotz-Miller inversion (e.g. with type I extreme value shocks)

$$\hat{\sigma}_i(g, \epsilon) = \underset{a}{\arg\max \log(\hat{P}_i(a|g)) + \epsilon}$$

2 Let σ̃_i(·; θ) be the best response of player *i* when payoff parameters are θ and other players play ô_{-i}, estimate θ to minimize

$$\hat{ heta} = rgmin \sum_{a,g,i} \left(\mathsf{P}_i^{\tilde{\sigma}_i;\hat{\sigma}_{-i}}(a|g) - \mathsf{P}_i^{\hat{\sigma}}(a|g)
ight)^2$$

Network formation

Paul Schrimpf

Hsieh, König,

- Model
- Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an

Lee and Fong (2013)

Ho and Lee (20 Model

Data

Estimatio

Results

Paul Schrimpf

- Hsieh, König, and Liu (2017)
- Data
- Estimatio
- Atalay et al. (2011)
- Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar and Jackson (2013)
- Lee and Fong (2013)
- Ho and Lee (2) Model
- Data
- Estimatio
- Results
- References

Identification 1

- "Intuitively, if there are gains from trade between two agents who form a link (given the actions of others), a static model would predict that the link should form regardless of which agent obtains a larger share. However, in a dynamic model, different values of Nash bargaining parameters will change each agent's respective outside options through their continuation values, and hence only certain parameter values will be consistent with a link forming in equilibrium."
- What data is observed?
 - Realized sequence of networks?
 - Sequence of networks + actions = announcements (i.e. we see potential links where negotiations failed)
 - 2-step estimator assumes the announcements observed, single step estimator allows only networks to be observed

Paul Schrimpf

Identification 2

Results Atalay et al.

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and Lee (2019) Model Data Estimation

Results

References

 Section 4.2 about estimation of bargaining parameter assumes (N, G, π, β, f, c) either observed, assumed, or can be separately estimated

Paul Schrimpf

- Hsieh, König, and Liu (2017)
- Model Data
- Estimatio
- Atalay et al. (2011)
- Background Model Estimation

Strategic network formatior

- Christakis et al. (2010) Chandrasekhar an Jackson (2013)
- Lee and Fong (2013)
- Ho and Lee
- Mode
- Data
- Estimatio
- Reference

Identification if π , c not known

• Assuming announcements observed, usual dynamic decision model identifies per-period payoff:

$$\tilde{\pi}(a|g) = \sum_{g'} q^{P}(g'|a,g) \left(c_{i}(g'|g) + \mathbb{E}_{\eta}[\pi_{i}(\Gamma(g',\eta), t^{P}_{\Gamma(g',\eta)},\eta)] \right)$$

- $q^{P}(g'|a_{i},g)$ is known, so variation in a_{i} identifies $c_{i}(g'|g) + \mathbb{E}_{\eta}[\pi_{i}(\Gamma(g',\eta), t^{P}_{\Gamma(q',\eta)}, \eta)]$
- Need restriction to separate c_i and π_i , e.g. assume $c_i(g'|g) = 0$ if g' = g
- $\Gamma(g', \eta) =$ stable subnetwork of g'

$$abla(g,\eta) = \begin{cases} g \\ \Gamma(g',\eta) \text{ otherwise where } g' = g \setminus \{ij \in g : \Delta S_{ij}(G,\eta)\} \end{cases}$$

Paul Schrimpf

Hsieh, König, and Liu (2017 ^{Model} Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and Lee (2019) Model

Data

Estimation

Results

References

Identification if π , c not known

- Need to untangle $\Gamma,\,\eta,$ and π from bargaining
- Estimator assumes η degenerate

Paul Schrimpf

Hsieh, König, and Liu (2017) ^{Model} ^{Data}

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar ar
- Lee and Fong (2013)
- Ho and Lee (2019)
- Model
- Data
- Estimatio
- Results

References

Example: Insurer-Provider negotiations

- Simulate version of model designed to reflect features of HMO-hospital network
- Look at performance of estimator
- Ignoring dynamics biases estimates of payoffs (table 2)
- Estimates of bargaining power appear unbiased and precise (table 3)
- Simulate hospital mergers

Paul Schrimpf

Hsieh, König,

Model Data Estimatio

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and L

Model

Data

Estimatio

Results

References

	"B-Pow"	# Eq	Full	Eff.	Single	Single	Single	Single	Active	Exp.
		Net	Net	Net	(90%)	(50%)	& Full	& Eff	Hosp	Links
1 Hosp	Equal	1.03	0.01	0.88	0.97	1.00	0.01	0.88	1.00	1.00
2 HMOs	Hospitals	1.01	0.00	0.91	0.99	1.00	0.00	0.91	1.00	0.99
	HMOs	1.02	0.00	0.80	0.98	1.00	0.00	0.80	1.00	0.99
2 Hosp	Equal	3.36	0.39	0.90	0.01	0.17	0.04	0.14	2.00	2.65
2 HMOs	Hospitals	3.57	0.22	0.83	0.00	0.23	0.00	0.23	2.00	2.49
	HMOs	2.67	0.01	0.92	0.01	0.73	0.01	0.67	1.99	2.30
3 Hosp	Equal	1.92	0.00	0.72	0.01	0.05	0.00	0.01	2.99	2.88
2 HMOs	Hospitals	1.89	0.00	0.54	0.01	0.15	0.00	0.10	2.94	2.55
	HMOs	1.53	0.00	0.63	0.00	0.45	0.00	0.36	2.91	2.42

Table 1: Simulated Equilibrium Network Distributions

Summary statistics from 100 market draws for each specification. "B-Pow": Equal - $b_{ij} = .5 \forall ij$; Hospitals - $b_ij = .8$ when *i* is a hospital, .2 otherwise; HMOs - $b_ij = .8$ when *i* is an HMO, .2 otherwise. # Eq Net. Average number of networks that occur more than 10% in the equilibrium network distribution (E.N.D.). Full Net / Eff Net : % of runs in which full / efficient network occurs more than 10% in E.N.D. Single (x%): % of runs in which a single network occurs more than x% in E.N.D. Single & Full / Eff: % of runs in which a single network occurs more than 90% in E.N.D., and that network is full / efficient. Active Hosp: average number of hospitals that have contracts with at least one HMO more than 10% of the time in E.N.D. Expected Links: expected number of bilateral links in E.N.D.

Paul Schrimpf

Hsieh, König,

Model Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

Ho and Lee (2 Model

Data

Estimatio

Results

References

Table 2:	Regression	of Hospital	Margins o	on Observables	/ Characteristics
----------	------------	-------------	-----------	----------------	-------------------

Timing:		Dynamic					Static					
	Equ	ıal	Hospital HMO		0	Equ	ıal	Hosp	oital	HMO		
	Coeff	s.e.	Coeff	s.e.	Coeff	s.e.	Coeff	s.e.	Coeff	s.e.	Coeff	s.e.
Const.	-2.40	1.33	0.72	1.43	1.96	1.48	21.77	0.73	23.94	0.63	18.31	0.69
Avg. Cost	-0.94	0.05	-0.96	0.05	-0.77	0.07	-0.65	0.06	-0.56	0.05	-0.70	0.05
Cost-AC	-0.23	0.07	-0.20	0.07	0.10	0.10	-0.23	0.08	-0.36	0.07	-0.16	0.07
# Patient	-0.01	0.08	0.05	0.06	0.18	0.10	0.41	0.05	0.38	0.05	0.31	0.06
Total # Patients	-0.04	0.04	-0.11	0.03	-0.12	0.05	-0.30	0.03	-0.27	0.02	-0.31	0.02
HMO Marg	12.03	0.52	11.58	0.49	8.67	0.68	2.04	0.33	1.66	0.27	3.86	0.37
R^2	0.77		0.79		0.50		0.57		0.62		0.65	

Projection of simulated equilibrium expected per-patient margins between hospital *i* and HMO *j* onto equilibrium market observables as barganing power varies (Equal $-b_{ij} = .5 \forall ij$; Hospitals $-b_{ij} = .8$ when *i* is a hospital, .2 otherwise; HMOs $-b_{ij} = .8$ when *i* is an HMO, .2 otherwise). Results pool across 2x2 and 3x2 settings. Av. Cost: average hospital marginal cost in the market; Cost-AC: difference between hospital's marginal cost and average cost in the market; # Patient (Total # Patients): expected number of patients of HMO *j* (from all HMOs) served by hospital *i*; HMO Marg: expected HMO margins (premiums minus marginal cost). Extra Hospital: indicator for whether three are 3 hospitals (instead of 2) in the market.

Paul Schrimpf

Hsieh, König,

Model Data Estimati

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar ar Jackson (2013)

Lee and Fong (2013)

Ho and Lee (2019)

Model

Data

Estimatio

Results

References

Table 3: Monte Carlo Estimates of b_H

	True b_H	1 Markets / Sample	5 Markets / Sample	10 Markets / Sample
Avg. Estimate:	0.50	0.48	0.47	0.51
95% C.I.:		(0.10, 0.90)	(0.20, 0.70)	(0.40, 0.60)
Avg. Estimate:	0.80	0.60	0.76	0.77
95% C.I.:		(0.10, 0.90)	(0.40, 0.90)	(0.60, 0.80)
Avg. Estimate:	0.20	0.20	0.24	0.23
95% C.I.:		(0.10, 0.40)	(0.20, 0.50)	(0.20, 0.30)

Estimated values of hospital bargaining power b_H for 40 samples of either 1, 5, or 10 markets in 2x2 settings where a sequence of 20 networks were observed. Grid search conducted over b_H in increments of .05.

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data
- Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Lee and Fong (2013)

- Ho and Le Model
- Data
- Estimati
- Results

References

Merger simulation

	"B-Pow"	$+\Delta \pi^{H}$	$-\Delta \pi_{5\%}^{H}$	$+\Delta \pi^M$	$-\Delta \pi_{5\%}^{M}$	$+p^{M}$	$-p_{5\%}^{M}$	+ Ins	$-Ins_{5\%}$
(i) Dynamic	Equal	0.72	0.28	0.73	0.25	0.81	0.14	0.19	0.76
	Hospitals	0.59	0.29	0.12	0.29	0.75	0.20	0.25	0.71
	HMOs	0.80	0.17	0.76	0.24	0.85	0.11	0.15	0.77
(ii) Dynamic,	Equal	-	-	0.97	0.01	0.99	0.00	0.01	0.99
$+\Delta \pi^H \ge 0$	Hospitals	-	-	0.15	0.07	1.00	0.00	0.00	0.95
	HMOs	-	-	0.89	0.11	0.99	0.00	0.01	0.90
(iii) Static	Equal	0.12	0.85	0.02	0.91	1.00	0.00	0.00	1.00
	Hospitals	0.04	0.87	0.01	0.98	1.00	0.00	0.00	1.00
	HMOs	0.25	0.71	0.02	0.87	1.00	0.00	0.00	1.00
(iv) Static,	Equal	-	-	0.17	0.25	1.00	0.00	0.00	1.00
$+\Delta \pi^H \ge 0$	Hospitals	-	-	0.25	0.50	1.00	0.00	0.00	1.00
	HMOs	-	-	0.08	0.52	1.00	0.00	0.00	1.00

Summary statistics from merger simulations, where: (i) and (ii) are from a dynamic model ($\beta = .9$), (iii) and (iv) from a static model, and (ii) and (iv) condition also on markets where hospitals find it profitable to merge. "B-Pow": Equal - $b_{ij} = .5 \forall ij$; Hospitals - $b_{ij} = .8$ when *i* is a hospital, .2 otherwise; HMOs - $b_{ij} = .8$ when *i* is an HMO, .2 otherwise. $+\Delta \pi^{H}, -\Delta \pi^{H}_{5\%}$: percentage of markets in which total hospital profits increases at all or falls by $5\%; +\Delta \pi^{M}, -\Delta \pi^{M}_{5\%}$: percentage of markets in which total HMO profits increases at all or falls by $5\%; +p^{M}, -p^{M}_{5\%}$: percentage of markets in which both HMO premiums increase or fall by $5\%; +Ins, -Ins_{5\%}$: percentage of markets in which total patients insured increases at all or falls by 5%.

Paul Schrimpf

Hsieh, König,

- Model Data
- Estimatio

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013)

Ho and Lee (2019)

- Model
- Data
- Estimatio
- Results

References

Ho and Lee (2019)

"Equilibrium provider networks: bargaining and exclusion in health care markets"

- "narrow network" health insurance plans annoy consumers, concern policy makers
 - Insurers with market power underproviding quality?
 - Provider network design as a mechanism to "cream skim"
- Model of provider network formation
 - Bargaining between insurer and hospitals
 - Use to simulate effect of proposed "network adequacy" regulation

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimation
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019)

1

Model

- Data
- Estimation

References

1a Network formation & rate determination : MCOs (insurers) bargain with hospitals

- 1b Premium setting : MCOs and employers bargain over premiums
 - 2 Insurance demand : households choose insurance plans
 - 3 Hospital demand : sick households choose hospitals

¹1b-3 similar to Ho and Lee (2017), 1a new to this paper

Model

Paul Schrimpf

Hsieh, König, and Liu (2017 ^{Model} Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019)

Model

Data

Estimatio

Results

References

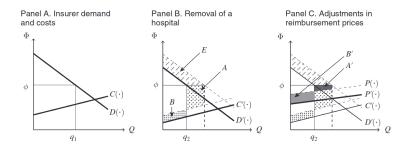


FIGURE 1. REMOVING A HOSPITAL FROM AN INSURER'S NETWORK

Notes: Panel A provides demand $D(\cdot)$ and costs $C(\cdot)$ for a hypothetical monopolist insurer offering a product with a given hospital network at fixed premium ϕ . Panel B illustrates new demand $D'(\cdot)$ and costs $C'(\cdot)$ upon the removal of a hospital from the network: areas A and B represent reduction in premium revenues and savings in costs (if the insurer reimburses hospitals at cost); area E represents the reduction in consumer surplus. Panel C depicts potential adjustment in reimbursement prices $P(\cdot)$ to $P'(\cdot)$ upon removal of a hospital: areas A' and B' represent reduction in insurer premium revenues and savings in payments to hospitals.

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model
- Data
- Estimatio
- Results

Atalay et al (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019)

Model

- Data
- Estimatio
- Results

References

Model : rate determination 1

- MCOs \mathcal{M} index *j*, hospitals \mathcal{H} , network *G*
- Profits

$$\pi_j^{\mathcal{M}}(G, p) \equiv \tilde{\pi}_j^{\mathcal{M}}(G) - \sum_{i \in G} D_{ij}^{\mathcal{H}}(G) p_{ij}$$
$$\pi_i^{\mathcal{H}}(G, p) \equiv \tilde{\pi}_i^{\mathcal{H}}(G) + \sum D_{in}^{\mathcal{H}}(G) p_{in}$$

$$n \in \mathcal{M}$$

Gains from trade

$$\Delta_{ij}\pi_j^{\mathcal{M}}(G,p) \equiv \pi_j^{\mathcal{M}}(G,p) - \pi_j^{\mathcal{M}}(G \setminus i, p_{-ij})$$
$$\Delta_{ij}\pi_i^{\mathcal{H}}(G,p) \equiv \pi_i^{\mathcal{H}}(G,p) - \pi_i^{\mathcal{H}}(G \setminus i, p_{-ij})$$

Paul Schrimpf

Hsieh, König and Liu (2017 ^{Model} Data

Estimatio

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019)

Model

- Data
- Estimatio

References

Model : rate determination 2

• Nash-in-Nash with Thread of Replacement (NNTR) $p_{ij}^{*}(G) = \min\{p_{ij}^{Nash}(G, p_{-ij}^{*}), p_{ij}^{OO}(G, p_{-ij}^{*})\}$

where

$$p_{ij}^{Nash}(G, p_{-ij}^*) \arg\max_{p} \left[\Delta_{ij} \pi_j^{\mathcal{M}}(G, p, p_{-ij}^*) \right]^{\tau} \left[\Delta_{ij} \pi_i^{\mathcal{H}}(G, p, p_{-ij}^*) \right]^{(1-1)}$$

and

$$\pi_j^{\mathcal{M}}(G, p_{ij}^{OO}, p_{-ij}) = \max_{k \notin G} \pi_j^{\mathcal{M}}(G \setminus i \cup k, p_{kj}^{res}, p_{-ij})$$

with

$$\pi_k^H(G \setminus i \cup k, p_{kj}^{res}, p_{-ij}) = \pi_k^H(G \setminus i, p_{-ij})$$

• Show that equilibrium prices exist for any G

Paul Schrimpf

Hsieh, König, and Liu (2017) ^{Model} Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019)

Model

Data

Estimation

References

Model : rate determination 3

- First order conditions for *p* given observed *G* used to estimate τ
- Model used to say what prices would be under counterfactual *G*
- Formation of observed *G* not used in estimation observed *G* constrained by regulators

Data

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

- Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019)
- Model

Data

Estimation Results

References

- California Public Employees' Retirement System (CalPERS) in 2004
- Three MCOs : Kaiser (vertically integrated HMO), Blue Cross (PPO), Blue Shield (HMO)
- Focus on Blue Shield : in 2004 had close to full networks in markets considered (forced to do so by regulation), but then reduced network
- Observe premiums, enrollemnt, admissions, demographics, prices paid by insurers to hospitals

Paul Schrimpf

Hsieh, König,

Model Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model

Data

Results

References

Table C1: Ho	spitals	Proposed	to	Be	Removed	from	Blue	Shield	in	2005
--------------	---------	----------	----	----	---------	------	------	--------	----	------

Market Name	Hospital Name	System Name	Decision
Central California	Selma Community Hospital		Approved
	Sierra View District Hospital		Denied
	Delano Regional Medical Center		Withdrawr
	Madera Community Hospital		Withdrawr
East Bay	Eden Hospital Medical Center	Sutter	Approved
	Sutter Delta Medical Center	Sutter	Approved
	Washington Hospital		Approved
Inland Counties	Desert Regional Medical Center	Tenet	Approved
Los Angeles	Cedars Sinai Medical Center		Approved
0	St. Mary Medical Center	Dignity	Approved
	USC University Hospital	Tenet	Approved
	West Hills Hospital Medical Center		Approved
	Presbyterian Intercommunity Hospital		Denied
	City of Hope National Medical Center		Withdrawn
	St. Francis Memorial Hospital	Verity	Withdrawi
	St. Vincent Medical Center	Verity	Withdrawn
North Bay	Sutter Medical Center of Santa Rosa	Sutter	Approved
	Sutter Warrack Hospital	Sutter	Approved
North San Joaquin	Memorial Hospital Medical Center - Modesto	Sutter	Approved
1	Memorial Hospital of Los Banos	Sutter	Approved
	St. Dominics Hospital	Dignity	Approved
	Sutter Tracy Community Hospital	Sutter	Approved
Orange	Hoag Memorial Hospital Presbyterian		Approved
Sacramento	Sutter Davis Hospital	Sutter	Approved
	Sutter General Hospital	Sutter	Approved
	Sutter Memorial Hospital	Sutter	Approved
	Sutter Roseville Medical Center	Sutter	Approved
San Diego	Sharp Chula Vista Medical Center	Sharp	Withdrawi
0	Sharp Coronado Hospital and Healthcare Center	Sharp	Withdraw
	Sharp Grossmont Hospital	Sharp	Withdraw
	Sharp Mary Birch Hospital for Women	Sharp	Withdrawi
	Sharp Memorial Hospital	Sharp	Withdraw
Santa Barbara/Ventura	St John's Pleasant Valley Hosp	Dignity	Denied
,	St John's Regional Med Center	Dignity	Denied
Santa Clara	OConnor Hospital	Verity	Approved
West Bay	California Pacific Medical Center Campus Hospital	Sutter	Approved
	Seton Medical Center	Verity	Approved
	St. Lukes Hospital	Sutter	Approved

Notes: List of hospitals that Blue Shield proposed to exclude in its filing to the California Department of Managed Health Care (DMHC) for the 2005 year. Source: DMHC "Report on the Analysis of the CalPERS/Blue Shield Narrow Network" (Zaretsky and pmpm Consulting Group Inc.) (2005)). "Market name" denotes the Health Service Area of the relevant hospital; the two HSAs in California that are not listed here did not contain hospital; that Blue Shield proposed to exclude. "Decision" is the eventual outcome of the proposal for the relevant hospital.

Estimation

Network formation

Paul Schrimpf

Hsieh, König, and Liu (2017) Model Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model

Estimation

Results

References

- See Ho and Lee (2017)
- Hosptial demand and insurance demand by MLE
- Insurer non-inpatient hospital costs (η_j) and bargaining weights from first order conditions for Nash bargaining

Paul Schrimpf

Hsieh, König, and Liu (2017)

Model Data Estimatio

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

See paper.

Results

Paul Schrimpf

Hsieh, König,

Model Data

Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar an-Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data Estimation

Results

References

		Blue Shield	Blue Cross	Kaiser
Premiums (per year)	Single	3782.64	4192.92	3665.04
	2 party	7565.28	8385.84	7330.08
	Family	9834.84	10901.64	9529.08
Hospital	# Hospitals in network	189	223	27
Network	# Hospital systems in network	119	149	-
	Avg. hospital price per admission	6624.08(3801.24)	5869.26 (2321.57)	-
	Avg. hospital cost per admission	1693.47(552.17)	1731.44 (621.33)	-
Household	Single	19313	8254	20319
Enrollment	2 party	16376	7199	15903
	Family	35058	11170	29127
	Avg # individuals per family	3.97	3.99	3.94
Parameter	η (Non-inpatient cost per enrollee)	1691.50(10.41)	1948.61 (8.14)	2535.14 (0.62)
Estimates	$\tau^{\dot{H}}$ (Hospital bargaining weight)	0.31 (0.05)	0.38 (0.03)	-
(Ho and Lee, 2017)	τ^{ϕ} (Premium bargaining weight)		0.47(0.00)	

Table C2: Summary Statistics and Parameter Estimates

Notes: The first three panels report summary statistics by insurer. The number of hospitals and hospital systems for Blue Shield and Blue Cross are determined by the number of in-network hospitals or systems with at least 10 admissions observed in the data. Hospital prices and costs per admission are averages of unit-DRG amounts, unweighted across hospitals (with standard deviations reported in parentheses). The fourth panel reports estimates from <u>Ho and Leej (2017)</u> of marginal costs for each insurer (which do not include hospital payments for Blue Shield and Blue Cross), and (insurer-specific) hospital price and (non-insurer specific) premium Nash bargaining weights; standard errors are reported in parentheses. For Blue Shield and Blue Cross, as we are explicitly controlling for prices paid to hospitals, the estimated cost parameters $\{\eta_i\}_{j \in (BS, BC)}$ represent non-inpatient hospital marginal costs per enrollee, which may include physician, pharmaceutical, and other fees. Since we do not observe hospital prices for Kaiser, η_{Kaiser} also include Kaiser's inpatient hospital costs.

Objective	Social	Consumer	Blue Shi	eld	Complete
	(NNTR)	(NNTR)	(NNTR)	(NN)	(NNTR/NN
Surplus (\$ per capita)					
BS profits	1.5% [1.1%, 6.9%]	1.4% [0.9%, 8.0%]	2.6% [1.8%, 8.6%]	0.0% [0.0%, 0.0%]	304.7 [287.5, 312.
Hospital profits	-6.4% [-24.9%, -4.9%]	-22.9% [-37.7%, -15.0%]	-14.7% [-33.0%, -12.8%]	0.0% [0.0%, 0.0%]	170.0 [159.4, 209
Total hospital costs	0.2% [0.0%,1.9%]	0.7% [0.0%, 2.5%]	0.5%	0.0% [0.0%, 0.0%]	95.6 [94.1, 96.3
Total insurance costs	-0.1% [-0.4%, -0.1%]	0.1% [-0.3%, 0.2%]	-0.1% [-0.5%, -0.1%]	0.0% [0.0%, 0.0%]	2,008.5 [1,990.4, 2,02
Transfer/cost (\$ per enrollee)					
BS premiums	-0.6% [-2.7%, -0.5%]	-2.1% [-4.1%, -1.2%]	-1.2% [-3.6%, -1.0%]	0.0% [0.0%, 0.0%]	2,640.1 [2,615.8, 2,69
BS hospital payments	-5.6% [-22.4%, -4.4%]	-19.9% [-34.1%, -12.7%]	-11.9% [-29.6%, -10.1%]	0.0% [0.0%, 0.0%]	369.3 [347.5, 449.
BS hospital costs	-0.3% [-0.3%, 0.1%]	0.9% [0.0%, 1.2%]	0.0% [-0.1%, 0.2%]	0.0% [0.0%, 0.0%]	146.2 [146.1, 146.
BS market share	0.4% [0.2%, 1.7%]	-1.8% [-2.0%, 0.5%]	0.2% [-0.2%, 1.7%]	0.0% [0.0%, 0.0%]	0.52
Welfare Δ (\$ per capita)					
Consumer	11.7 [8.8, 50.3]	27.8 [17.3, 69.2]	19.9 [15.4, 60.9]	0.0 [0.0, 0.0]	
Total	1.0 [0.5, 4.4]	-11.5 [-12.1, -4.2]	-1.1 [-3.4, 2.0]	0.0 [0.0, 0.0]	
Number of complete network markets (out of 12)	6 [1, 7]	1 [0, 2]	4 [0, 4]	12 [12, 12]	
Number of systems excluded	0.5 [0.4, 1.3]	2.3 [1.8, 2.6]	1.2 [1.2, 1.8]	0.0	
Number of systems excluded conditional on exclusion	1.0	2.5	1.8 [1.8, 2.0]	0.0	

TABLE 1-SIMULATION RESULTS FOR ALL MARKETS (Averages)

Results

References

Network formation Paul Schrim

> Notes: Unweighted averages across markets. First four columns report outcomes for the stable network that maximizes social surplus, consumer welfare, or Blue Shield's (BS) profits, under Nash-in-Nash (NNTR) or Nash-in-Nash (NN) bargaining over hospital reinbursement rates. Percentages and welfare calculations represent changes relative to outcomes under the complete network; outcome levels for the complete network (where all five major hospital systems are included) are presented in right-most column. Ninety-five percent confidence intervals, reported below all figures, are constructed by using 80 bootstrap samples of admissions within each hospital-insurer pair to re-estimate hospital-insurer DRG weighted admission prices, re-estimate insurer marginal costs and Nash bargaining parameters, and re-compute simulations (see Ho and Lee 2017 for further details).

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Data
- Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

TABLE 2-SIMULATION RESULTS FOR SACRAMENTO

Objective	Social	Consumer	Blue Shield	Complete
Surplus (per capita)				
BS profits	0.0% [0.0%, 10.3%]	3.1% [1.7%, 10.3%]	3.1% [1.7%, 10.3%]	316.2 [290.2, 325.9]
Hospital profits	0.0% [-40.1%, 0.0%]	-26.0% [-40.1%, -21.3%]	-26.0% [-40.1%, -21.3%]	115.5 [102.2, 170.7]
Total hospital costs	0.0% [0.0%, 3.6%]	1.6% [1.2%, 3.6%]	1.6% [1.2%, 3.6%]	98.5 [96.1,99.4]
Total insurance costs	0.0% [-0.6%, 0.0%]	-0.1% [-0.6%, 0.0%]	-0.1% [-0.6%, 0.0%]	2,049.8 [2,032.6, 2,068.5]
Transfers (per enrollee)				
BS premiums	0.0% [-3.5%, 0.0%]	-1.5% [-3.5%, -1.1%]	-1.5% [-3.5%, -1.1%]	2,619.7 [2,593.9, 2,688.7]
BS hospital payents	0.0% [-30.4%, 0.0%]	-16.8% [-30.4%, -12.9%]	-16.8% [-30.4%, -12.9%]	333.8 [307.4, 444.8]
BS hospital costs	0.0% [0.0%, 1.2%]	1.2% [1.1%, 1.3%]	1.2% [1.1%, 1.3%]	165.5 [165.4, 165.7]
∆ Welfare (per capita)				
Consumer	0.0 [0.0, 60.1]	23.3 [15.7, 60.1]	23.3 [15.7, 60.1]	
Total	0.0 [0.0, 5.0]	-3.4 [-5.0, 5.0]	-3.4 [-5.0, 5.0]	
BS market share	0.0% [0.0%, 2.6%]	0.2% [-0.2%, 2.6%]	0.2% [-0.2% 2.6%]	0.53 [0.52, 0.54]
Network				
Number of systems excluded	0 [0,3]	3 [3, 3]	3 [3, 3]	
System 1 (Sutter)	1 [1.0]	1 [1.0]	1 [1.0]	
System 2 (Dignity)	1 [1.0]	1 [1.0]	1 [1.0]	
System 3 (UCD)	1 [0.9]	0	0	
System 4 (Rideout)	1	0	0	
	[0.9]	[0.0]	[0.0] 0	

Note: Simulation results from Sacrametto HSA. First three columns report outcomes for the stable network that maximizes occil supptise, consumer welfare, or Blue Shield's profits, under Nash-in-Nash with Threat of Replacement (NNTR) burgaining over hospital reimbursement rates. Percentages and welfare calculations repersent changes relative to outcomes under the complete network; cutome levels for the complete network (where all five major hospital systems are included) are presented in right-most column. Ninety-five percent confidence intervolas are reported below all figures (sceep for individual hospital systems, where the fraction of boostraps samples under which individual system members are included are reported beneath predictions); see Table 1 for additional denils.

Objective

Surplus (per capita) BS profits

Paul Schrimpf

Hsie	h, I	König,
and	Liu	(2017)

Model Data

Estimatio Results

Atalay et al.

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

Results

References

TABLE 3-SIMULATION RESULTS FOR SANTA BARBARA/VENTURA

Consumer

-5.0%

Blue Shield

0.0%

Complete

397.7

Social

-0.3%

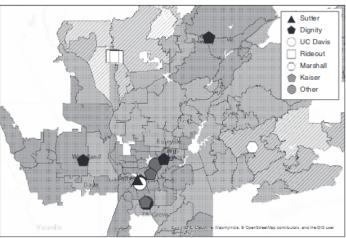
BS profits	-0.3% [-0.3%, 0.1%]	[-5.2%, -0.3%]	[0.0%, 0.1%]	397.7 [382.9, 403.3
Hospital profits	0.0% [-1.5%, 0.4%]	-1.5% [-15.3%, 0.4%]	$\begin{array}{c} 0.0\% \\ [-1.5\%, 0.0\%] \end{array}$	240.4 [224.0, 299.9
Total hospital costs	-1.0% [-1.0%, -0.9%]	-3.5% [-3.6%, -1.0%]	0.0% [-0.9%, 0.0%]	115.8 [115.1, 116.1
Total insurance costs	0.0% [0.0%, 0.0%]	0.5% [0.0%, 0.6%]	0.0% [0.0%, 0.0%]	1,832.9 [1,815.1, 1,849
Transfers (per enrollee) BS premiums	-0.1% [-0.3%, 0.0%]	-0.5% [-2.5%, 0.0%]	0.0% [-0.3%, 0.0%]	2,677.8 [2,646.6, 2,751
BS hospital payments	-0.5% [-2.0%, -0.2%]	$\substack{-3.1\%\\[-17.0\%,-0.2\%]}$	$\begin{array}{c} 0.0\% \\ [-2.0\%, 0.0\%] \end{array}$	363.9 [338.0, 459.1
BS hospital costs	$^{-1.4\%}_{[-1.4\%, -1.4\%]}$	$^{-4.6\%}_{[-4.6\%, -1.4\%]}$	$\begin{array}{c} 0.0\% \\ [-1.4\%, 0.0\%] \end{array}$	126.0 [126.0, 126.1
∆ Welfare (per capita) Consumer	1.6 [0.7, 7.0]	7.0 [0.7,55.7]	0.0	
Total	0.5	-15.2	0.0	
BS market share	$\substack{-0.2\%\\[-0.2\%,-0.1\%]}$	$^{-4.6\%}_{[-4.7\%,-0.2\%]}$	$\begin{array}{c} 0.0\% \\ [-0.1\%, 0.0\%] \end{array}$	0.64 [0.63, 0.64]
Network				
Number of systems excluded	1 [1, 1]	3 [1,3]	0 [0, 1]	
System 1 (Dignity)	1 [1.0]	1 [1.0]	1 [1.0]	
System 2 (Community)	1 [1.0]	1 [1.0]	1 [1.0]	
System 3 (Cottage)	1 [1.0]	0 [0.2]	1 [1.0]	
System 4 (HCA)	1	0	1	
System 5 (Lompoc MC)	[1.0] 0 [0.0]	[0.2] 0 [0.0]	[1.0] 1 [0.9]	

Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimatio
- Results

Atalay et al. (2011)


Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar anu Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data Estimation Results

References

Panel A. Sacramento

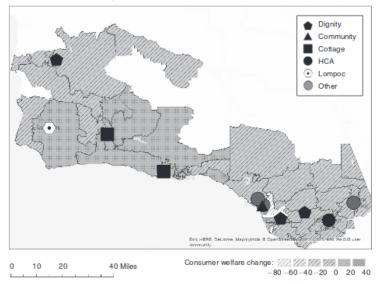
Paul Schrimpf

Hsieh, König, and Liu (2017)

- Model Data Estimatio
- Results

Atalay et al. (2011)

Background Model Estimation


Strategic network formation

- Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013 Ho and Lee (2019) Model Data
- Estimatio

Results

References

Panel B. Santa Barbara/Ventura

Paul Schrimpf

Hsieh, König and Liu (2017 Model Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Atalay, Enghin, Ali Hortaçsu, James Roberts, and Chad Syverson. 2011. "Network structure of production." *Proceedings of the National Academy of Sciences* 108 (13):5199–5202. URL

http://www.pnas.org/content/108/13/5199.abstract.

Chandrasekhar, Arun and Matthew O Jackson. 2013. "Tractable and consistent random graph models." *arXiv preprint arXiv:1210.7375* URL http://arxiv.org/abs/1210.7375.

Christakis, Nicholas A., James H. Fowler, Guido W. Imbens, and Karthik Kalyanaraman. 2010. "An Empirical Model for Strategic Network Formation." Working Paper 16039, National Bureau of Economic Research. URL http://www.nber.org/papers/w16039.

Paul Schrimpf

Hsieh, König and Liu (201; ^{Model} Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Becultr

References

Graham, Bryan S. 2014a. "An Empirical Model of Network Formation: Detecting Homophily When Agents Are Heterogenous." Working Paper 20341, National Bureau of Economic Research. URL

http://www.nber.org/papers/w20341.

- ---. 2014b. "Methods of Identification in Social Networks." Working Paper 20414, National Bureau of Economic Research. URL http://www.nber.org/papers/w20414.
- Ho, Kate and Robin S. Lee. 2017. "Insurer Competition in Health Care Markets." *Econometrica* 85 (2):379-417. URL https://onlinelibrary.wiley.com/doi/abs/10.3982/ ECTA13570.
- ----. 2019. "Equilibrium Provider Networks: Bargaining and Exclusion in Health Care Markets." American Economic Review 109 (2):473-522. URL http://www.aeaweb.org/ articles?id=10.1257/aer.20171288.

Paul Schrimpf

Hsieh, König and Liu (2017 ^{Model} Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation

References

Hsieh, Chih-Sheng, Michael D König, and Xiaodong Liu. 2017. "Network Formation with Local Complements and Global Substitutes: The Case of R&D Networks." URL http://www.econ.uzh.ch/static/wp/econwp217.pdf.

Jackson, Matthew O. 2010. *Social and economic networks*. Princeton University Press.

Lee, Robin S and Kyna Fong. 2013. "Markov-Perfect Network Formation An Applied Framework for Bilateral Oligopoly and Bargaining in Buyer-Seller Networks." Tech. rep. URL http://www.people.fas.harvard.edu/~robinlee/ papers/MPNENetworkFormation.pdf.

Leung, Michael. 2013. "Two-step estimation of network-formation models with incomplete information." Available at SSRN 2254145. URL http://ftp.zew.de/pub/ zew-docs/veranstaltungen/SEEK2013/SocialNetwork_ Workshop/SEEK2013_BEN_Leung.pdf.

Paul Schrimpf

Hsieh, König, and Liu (2017)

Data Estimation Results

Atalay et al. (2011)

Background Model Estimation

Strategic network formation

Christakis et al. (2010) Chandrasekhar and Jackson (2013) Lee and Fong (2013) Ho and Lee (2019) Model Data Estimation Results

References

Sheng, Shuyang. 2012. "Identification and estimation of network formation games." Unpublished Manuscript URL http://www-scf.usc.edu/~ssheng/network.pdf.