Paul Schrimpf

Introductio

Describing Networks

structure

Fershtman an

Claussen, Falck, a

Related Subse

Zacchia (2019

Acemoglu, Akcigit, and Kerr (2016)

Reference

Network structure and outcomes

Paul Schrimpf

UBC Vancouver School of Economics

April 6, 2021

Paul Schrimpf

Introductio

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck, and Grohsjean (2012)

Related Subsequen Work

Acemoglu, Akcigit,

Reference

References

- Overviews:
 - Jackson (2010), https://class.coursera.org/networksonline-001
 - Goyal (2012)
- Network industries: Economides (1996), Economides and Encaoua (1996)

Paul Schrimpf

Introduction

Describing Networks

Network structure outcomes

Fershtman an Gandal (2011) Claussen, Falc

Related Subse Work

Acemoglu, Akcigit,

Reference

1 Introduction

- 2 Describing Networks
- 3 Network structure & outcomes
 Fershtman and Gandal (2011)
 Claussen, Falck, and Grohsjean (2012)
 Related Subsequent Work
 Zacchia (2019)
 Acemoglu, Akcigit, and Kerr (2016)

Paul Schrimpf

Introduction

Describing Networks

Network structure &

Fershtman an

Claussen, Falck, and Grohsjean (2012)

Related Subsequent Work

Zacchia (2019) Acemoglu, Akcigit,

References

Section 1

Introduction

Paul Schrimpf

Introduction

Describing Networks

Network structure a outcomes

Gandal (2011) Claussen, Falck, and Grohsjean (2012) Related Subsequent Work

Acemoglu, Akcigit, and Kerr (2016)

Reference

Introduction 1

- Network: nodes & links between them
- Questions:
 - How does network structure affect behavior?
 - How are networks formed?
- Focus on networks that are not owned by a single entity
 - i.e. not on network industries where a single firm owns and controls its network (telecom, electricity, airlines, etc)
 - Relatively new area, little empirical work

Paul Schrimpf

Introduction

Describing Networks

Network structure

Fershtman and Gandal (2011)

Claussen, Falck, and Grohsjean (2012)

Work

Acemoglu, Akcigit,

Doforonoo

Networks in IO

- R&D collaboration
- Trade
- Buyer-supplier
- Consumer information & targeting

Paul Schrimpf

Introductio

Describing Networks

Network structure a

Fershtman an

Claussen, Falck, and

Related Subsequer

Zacchia (20:

Acemoglu, Akcigit, and Kerr (2016)

References

Section 2

Describing Networks

Paul Schrimpf

Introductio

Describing Networks

Network structure

Gandal (2011)

Claussen, Falck, and
Grohsjean (2012)

Related Subsequent

Zacchia (2019) Acemoglu, Akcigit,

and Kerr (2016)

References

Basic notation

- Nodes $\in \{1, ..., N\} = \mathcal{N}$
- Adjacency matrix G, $N \times N$ matrix with g_{ij} representing connection between i and j
- Graph $\equiv (\mathcal{N}, G)$
 - Undirected ≡ symmetric *G*
 - Directed ≡ asymmetric G
 - Unweighted (or discrete) $\equiv g_{ij} \in \{0,1\}$

Paul Schrimpf

Introduction

Describing Networks

Network structure outcomes

Claussen, Falck, and Grohsjean (2012) Related Subsequent

Zacchia (2019)
Acemoglu, Akcigi

Reference

Summary statistics 1

- Distance between two nodes = shortest path between them (∞ if no connected path)
- Diameter = largest distance between nodes
- Clustering
 - of graph is portion of j and k connected given j and k both connected to i
 - of node i is the portion of time j and k are connected directly given j and k are connected to i
 - average clustering of graph = average across nodes of node clustering
- Degree of a node = number of links
 - Directed graphs: in-degree & out-degree
 - Degree centrality = $\frac{\text{degree}}{N-1}$
 - Network density = fraction of possible links present = $\frac{\text{average degree}}{N-1}$
 - Degree distribution = CDF of node degree

Paul Schrimpf

Introduction

Describing Networks

Network structure

Gandal (2011) Claussen, Falck, and Grohsjean (2012)

Related Subsequen Work

Acemoglu, Akcigit, and Kerr (2016)

Reference

Summary statistics 2

- Centrality measures:
 - Degree, closeness, betweenness, decay
 - Eigenvector, Katz, Bonacich

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011)

Claussen, Falck, and Grohsjean (2012) Related Subsequent Work

Zacchia (2019) Acemoglu, Akcigit,

Reference

Section 3

Network structure & outcomes

Paul Schrimpf

Introductio

Describing Networks

Network structure & outcomes

Gandal (2011) Claussen, Falck, ar Grohsjean (2012) Related Subsequer Work

Acemoglu, Akcigit, and Kerr (2016)

Reference

Network structure & outcomes

- Question: how does network structure affect some outcome?
- Reduced form work: regress outcome on node or network summary statistics

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequent

Acemoglu, Akcigit, and Kerr (2016)

Reference

Example: Fershtman and Gandal (2011)

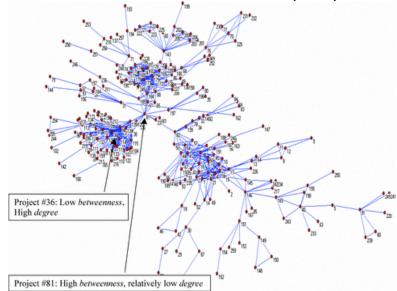
- Knowledge spillovers in open-source projects
- Data:
 - Sourceforge
 - Contributor network: linked if participated in same project
 - Project network: linked if have common contributors
- Question: how important are project vs contributor spillovers for project success?
 - Project spillover = developers learn from working on a particular project
 - Contributor spillover = developers learn from working with other developers
- Related paper: Claussen, Falck, and Grohsjean (2012)

Paul Schrimpf

Introduction

Describin

Network structure


Fershtman and Gandal (2011)

Claussen, Falck, a Grohsjean (2012)

Zacchia (2019) Acemoglu, Akcigit,

Reference

Paul Schrimpf

Introductio

Describin

Network structure 8 outcomes

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequent

Acemoglu, Akcigit,

Referenc

Example: Fershtman and Gandal (2011)

Table: The Distribution of Contributors per Project and Projects per Contributor

Project Ne	etwork	Contributor Network		
Contributors	N Projects	Projects	N Contribute	
1	77,571	1	123,562	
2	17,576	2	22,690	
3-4	11,362	3-4	10,347	
5-9	6,136	5-9	3,161	
10-19	1,638	10-19	317	
20-49	412	20-49	26	
≥ 50	56	≥50	1	
Total projects	114,751	Total contributors	160,104	

Paul Schrimpf

Introductio

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011)

Claussen, Falck, ar Grohsjean (2012)

Zacchia (2019) Acemoglu, Akcigit,

- -

Example: Fershtman and Gandal (2011)

Table: Distribution of Component Size

Component Size (Contributors)	Components (Subnetwor
55,087	1
196	1
65–128	2
33-64	27
17–32	152
9–16	657
5–8	2,092
3-4	4,810
2	8,287
1	47,787

Paul Schrimpf

Introduction

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011)

Grohsjean (2012)

Work

Acemoglu, Akcigit,

Reference

Example: Fershtman and Gandal (2011)

Table: Distribution of Degree

Degree	Number of Contributors
0	47,787
1	22,133
2	14,818
3-4	20,271
5-8	20,121
9-16	16,228
17-32	10,004
33-64	5,409
65-128	2,040
129-256	802
257-505	491

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequent

Acemoglu, Akcigit,

Reference

Empirical specification

- Degree centrality as measure of direct connections
- Closeness centrality = $C_C(i) = \frac{N-1}{\sum_{j \in \mathcal{N}} d(i,j)}$ conditional on degree measures indirect connections
- $S_i = success = number of downloads$

$$S_i = \alpha + \gamma C_c(i)/(N-1) + \beta \text{degree}_i + \text{controls}$$

Paul Schrimpf

Introductio

Describing Networks

Network structure

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequen

Zacchia (2019) Acemoglu Akcigi

Acemoglu, Akcigit, and Kerr (2016)

Deference

Results - project network

Table: Regression Results: Dependent Variable: Idownloads

	Regression 1	(All 66,511 Projects)	Regression 2	(Giant Component: 18.697
Independent variables	Coefficient	T-Statistic	Coefficient	T-Statistic
Constant	0.72	17.76	1.45	3.62
lyears_since	1.42	60.66	1.68	31.08
lcount_topics	0.23	9.07	0.18	3.59
lcount_trans	0.35	11.73	0.45	8.15
lcount_aud	0.36	10.44	0.44	5.85
lcount_op_sy	0.11	5.95	0.18	5.00
ds_1	1.96	60.57	2.01	31.90
ds_2	0.60	17.58	0.78	11.50
ds_3	0.89	25.83	0.66	9.95
ds_4	1.86	57.21	1.80	29.27
ds_5	2.72	79.97	2.61	40.96
ds_6	2.12	27.07	2.03	15.35
inactive	0.45	6.11	0.39	2.75
Icpp	0.46	18.71	0.87	29.34
Idegree	0.19	9.45	0.079	2.10
giant_comp	0.21	3.86		
lgiant_cpp	0.44	12. 05		
lgiant_degree	0.05	1.26		
Icloseness			0.69	3.21
Number of observations	66,511		18,697	
Adjusted R ²	0.41		0.40	

Paul Schrimpf

Introductio

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequent

Zacchia (2019) Acemoglu, Akcigit,

Reference

Contributor effects

- Regress downloads on average contributor degree and average contributor closeness centrality (and controls)
- Result:
 - Coefficient on log average closeness = 0.12, with t = 1.59
 - Coefficient on log average degree = -0.019, with t = -0.72
- Including both contributor and project measures, project ones significant, contributor ones not

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011)

Claussen, Falck, and Grohsjean (2012) Related Subsequent

Acemoglu, Akcigit,

References

Robustness

			Nobustitess			
Dept Variable: Ldownloads	≥ 2yr,	≥ 200dl	< 3.6yr,	≥ 200dl	≥ 2yr,	≥ 200dl
Independent variables	Coef	T Stat	Coef	T Stat	Coef	T Stat
Constant	5.75	13.35	6.21	14.55	8.51	16.29
lyears_since	1.08	11.18	0.91	11.40	1.06	10.97
lcount_topics	0.06	1.31	0.06	1.12	0.06	1.23
lcount_trans	0.42	9.61	0.44	8.83	0.41	9.39
lcount_aud	0.21	2.65	0.46	5.62	0.18	2.28
lcount_op_sy	0.26	7.91	0.26	6.62	0.26	7.94
ds_1	0.46	6.83	0.75	6.23	0.46	6.88
ds_2	0.57	7.31	0.52	4.80	0.57	7.68
ds_3	0.27	4.35	0.23	2.72	0.28	4.44
ds_4	0.19	3.45	0.18	2.41	0.18	3.24
ds_5	0.75	12.99	0.54	6.92	0.73	12.80
ds_6	0.73	7.00	0.45	3.06	0.72	6.89
Inactive	0.018	0.12	0.02	0.11	0.041	0.28
lcpp	0.76	22.21	0.63	19.30	0.59	15.38
ldegree	0.19	5.07	0.0038	0.09	0.019	0.43
lcloseness	0.71	3.28	0.54	2.37	0.45	2.08
lbetweenness					0.30	9.21
Number of observations	6,397		4,086		6,397	
Adjusted R ²	0.28		0.25		0.29	

Paul Schrimpf

Introductio

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequent

Zacchia (2019) Acemoglu, Akcigit,

Limitations

- How to interpret results?
 - Network structure affects downloads
 - Downloads affect contributions, which affects network structure
- Why closeness centrality and degree? (they do explore robustness to other measures, but none of them theoretically motivated)

Paul Schrimpf

Introduction

Describing Networks

Network

Fershtman and Gandal (2011)

Claussen, Falck, and Grohsjean (2012)

Work

Acemoglu, Akcigit, and Kerr (2016)

Reference

Claussen, Falck, and Grohsjean (2012)

- Developer networks in electronic games
- Panel data 1972-2007 on games & developers
- Construct network of developers 1995-2007
- Developers linked in year t if worked together anytime between 1972 and t
- Look at relationship between revenue (or rating) & degree centrality & closeness centrality

Paul Schrimpf

Introduction

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011)

Claussen, Falck, and Grohsjean (2012)

Related Subsequent Work

Acemoglu, Akcigit, and Kerr (2016)

References

Claussen, Falck, and Grohsjean (2012)

$$S_{igdpt} = \alpha_i + \alpha_d + \alpha_p + \alpha_t + \beta_1 D_{igdpt-1} + \beta_2 C_{igdpt-1} + CV_{igdpt} \gamma + \epsilon_{igdpt}$$

- Developer i
- Game *g*
- Developing firm d
- Publisher p
- Year t

Paul Schrimpf

Introduction

Describin

Network structure

Fershtman and

Claussen, Falck, and Grohsjean (2012)

Work

Acemoglu, Akcigit,

Reference

Claussen, Falck, and Grohsjean (2012)

Table 1 Summary statistics.

Variable	N	Mean	SD	Min	Max
ln(revenue)	151,677	14.958	1.701	4.264	19.440
Critics' score	146,675	0.007	0.781	-3.831	2.223
Degree centrality D_{igdpt}	148,627	0.001	0.002	0.000	0.041
Closeness centrality C_{igdpt}	148,627	0.205	0.038	0.052	0.338
Leading position	151,677	0.213	0.410	0	1
Tenure	151,677	3.871	4.254	0	28
Team size	151,677	65.780	53.234	1	297
Licensed game	151,677	0.362	0.480	0	1

Paul Schrimpf

Introduction

Describing Networks

Network structure &

Fershtman and Gandal (2011)

Claussen, Falck, and Grohsjean (2012)

Work

Acemoglu, Akcigit,

References

Claussen, Falck, and Grohsjean (2012)

Table 3Baseline regression results with revenue as success measure.

	(3-1)	(3-2)	(3-3)	(3-4)	
	Dependent variable: ln(revenue)				
Degree centrality Digdpt	8.494*	8.029*	7.281**	6.512*	
	(4.468)	(4.342)	(3.321)	(3.644)	
Closeness centrality Cigdot	-0.137	-0.307	-0.105	-0.223	
	(0.201)	(0.217)	(0.155)	(0.174)	
Co-worker degree c. \overline{D}_{-igdpt}			40.20	56.53	
			(60.77)	(45.38)	
Co-worker closeness \overline{C}_{-igdpt}			-0.548	-3.122	
			(3.059)	(2.567)	
Tenure	0.0170	0.0612	0.0236	0.0676	
	(0.0618)	(0.0886)	(0.0664)	(0.0932)	
Team size	0.00447***	0.00396***	0.00446***	0.00394***	
	(0.000937)	(0.000990)	(0.000938)	(0.000991)	
Licensed game	0.192***	0.172**	0.193***	0.171**	
	(0.0720)	(0.0771)	(0.0721)	(0.0774)	
Network measures lagged	No	Yes	No	Yes	
Observations	151,484	94,597	151,443	94,388	
Number developers	56,944	30,993	56,937	30,956	
Within-developer R2	0.635	0.638	0.635	0.638	
Between-developer R ²	0.802	0.742	0.798	0.736	
Overall R2	0.736	0.689	0.734	0.684	

Notes: Fixed-effect OLS point estimates with standard errors clustered at the project

Paul Schrimpf

Introductio

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck, and Grohsjean (2012)

Related Subsequent Work

Zacchia (2019) Acemoglu, Akcigit, and Kerr (2016)

References

Gandal and Stettner (2016)

"Network dynamics and knowledge transfer in virtual organisations"

- Panel data of Sourceforge contributions
- Look for direct & indirect spillovers
- Programmers who work on many projects positively impact success beyond their effect on connectivity in the network

Paul Schrimpf

Introductio

Describing Networks

Network structure

Fershtman and Gandal (2011) Claussen, Falck, an Grobsiean (2012)

Related Subsequent Work

Acemoglu, Akcigit, and Kerr (2016)

Reference

Athey and Ellison (2014)

"Dynamics of Open Source Movements"

- Dynamic model of open source contributions and commercial competitors
- Theory paper, not empirical

Paul Schrimpf

Introduction

Describing Networks

Network structure

Gandal (2011)

Claussen, Falck, an
Grohsjean (2012)

Grohsjean (2012) Related Subsequen Work

Zacchia (2019) Acemoglu, Akcigit,

Reference

Knowledge Spillovers through Networks of Scientists

Zacchia (2019)

- Weighted network of publicly traded companies
- Links = proportion of firms' inventors that have former patent collaborations
- Main endogeneity concern: common unobservables
- IV motivated by model of firm interaction

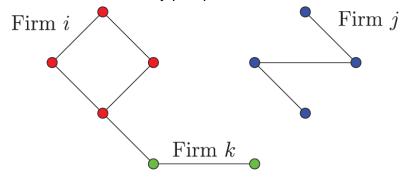
Paul Schrimpf

Introduction

Describing

Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck, an Grohsjean (2012)


Zacchia (2019)

Acemoglu, Akcigit,

Reference

Network Among Inventors

Inventor m and n linked (p_{(mn)t} = 1) if m and n collaborated on any past patent

Paul Schrimpf

Introductio

Describing Networks

Network structure

Fershtman an Gandal (2011)

Claussen, Falck, and Grohsjean (2012) Related Subsequent

Zacchia (2019)

Acemoglu, Akcigit,

Reference

Network Among Firms

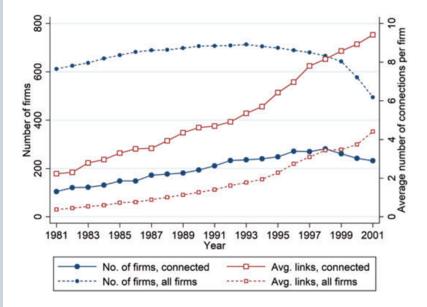
$$c_{(ij)t}^f = f\left(\frac{\text{inv. of i connectected to j at t} + \text{inv. of j connectected to i at t}}{\text{inv. of i at t} + \text{inv. of j at t}}\right)$$

- Symmetric
- $0 \le c_{(ii)t}^f \le 1$
- In empirical results, $f(\cdot) = \sqrt{\cdot}$ and $g_{(ij)t} = c_{(ij)t}^{\sqrt{\cdot}}$

Paul Schrimpf

Introduction

Describing


Network structure &

Fershtman and Gandal (2011) Claussen, Falck, a Grohsjean (2012)

Zacchia (2019)

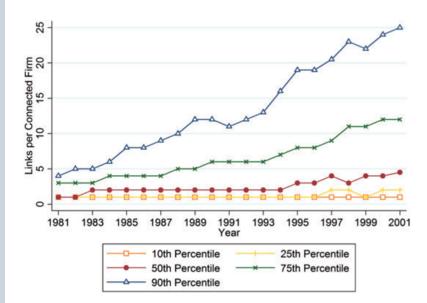
Acemoglu, Akcigit,

References

Paul Schrimpf

Introduction

Describing Networks


Network structure & outcomes

Fershtman and Gandal (2011) Claussen, Falck Grohsjean (2012

Zacchia (2019)

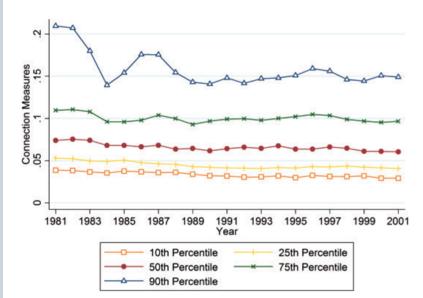
Acemoglu, Akcigit,

Reference

Paul Schrimpf

Introduction

Describing Networks


Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck, Grohsjean (2012)

Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

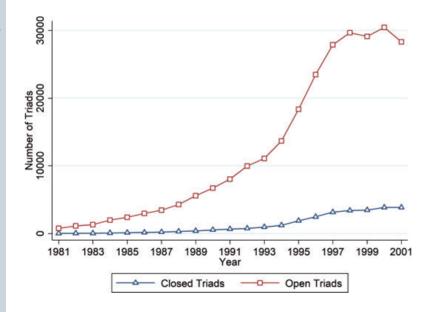
Reference

Paul Schrimpf

Introduction

Describing

Network structure


Fershtman and Gandal (2011) Claussen, Falck

Claussen, F Grohsjean (Related Sub

Zacchia (2019)

Acemoglu, Akcigit,

References

	TABLE 1
Network	Summary statistics, 1981-2001
structure and outcomes	
Paul Schrimpf	
	Y_{it} : real sales (Millions 1996\$\\$\$)
Introduction	
Describing Networks	V_{it}/A_{it} : Tobin's q
Network structure & outcomes	P_{it} : patent stock (cit. weighted)
Fershtman and Gandal (2011)	E_{it} : employees (thousands)
Claussen, Falck, and Grohsjean (2012)	D _H , unproject (insutation)
Related Subsequent Work Zacchia (2019)	Y_{it}/E_{it} : labour productivity
Acemoglu, Akcigit, and Kerr (2016)	
References	Y_{it}/K_{it} : capital productivity
	Y_{it}/S_{it} : productivity of R&D
	$Y_{it}/$ Jaffe measure (i,t)
	$Y_{it}/\prod_{j} S_{jt}^{g_{(ij)t}}$: Y to spillover poo
	No. of observations

tics, 1981-2001			
	No network	Quartile of	$f \sum_t \bar{g}_{it}$
		1	2
Millions 1996\$\\$\$)	751	1,066	1,383
	(3,792)	(2,357)	(2,504)
5 q	1.886	1.885	2.573
	(2.031)	(1.839)	(3.080)
k (cit. weighted)	7.453	16.09	24.65
	(48.17)	(44.75)	(50.91)
(thousands)	4.068	6.940	9.328
	(12.52)	(15.80)	(16.63)
productivity	135.6	134.5	157.1
	(80.06)	(106.6)	(95.43)
l productivity	6.932	5.308	5.142
	(6.083)	(3.167)	(3.992)
tivity of R&D	39.31	19.71	51.10
	(134.1)	(70.47)	(479.9)
sure (i, t)	80.28	107.7	140.0
	(407.7)	(238.5)	(264.9)
to spillover pool		953.9	846.2
		(2,224.0)	(1,762.1

4,363

1,819

1,854

(1,762.1)

3

2,172

(4,533)

2.734

(3.306)

74.03

(143.8)

12.40

(22.43)

156.5

(117.7)

4.941

(3.292)

11.12

(34.46)

211.6

(435.4)

577.6

(1,858.7)

1,949

4

10,462

(20,058)

3.410 (4.118)

652.0

(1322.1)

57.09

(96.80)

192.4

(153.3)

4.184

(2.883)

4.342

(3.932)

962.5

(1787.8)

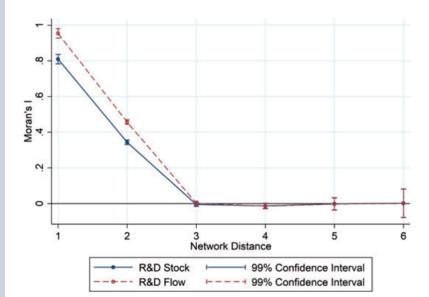
198.9

(1,339.6)

2,028

Paul Schrimpf

Introduction


Describing Networks

Network structure

Fershtman and Gandal (2011) Claussen, Falck, and Grohsjean (2012) Related Subsequent Work

Zacchia (2019)

Acemoglu, Akcigit,

Paul Schrimpf

Introduction

Describing Networks

Network structure

Fershtman and Gandal (2011) Claussen, Falck, and Grohsjean (2012) Related Subsequent

Zacchia (2019)

Acemoglu, Akcigit,

Reference

Econometric Model

$$\log Y_{it} = \alpha_i + \sum_{q=1}^{Q} \beta_q \log X_{itq} + \gamma \log S_{it} + \delta \sum_{j=1}^{N} g_{(ij)t} \log S_{jt} + \tau_t + \nu_{it}$$

- Output Y_{it}
- Inputs X_{itq}
- R&D stock S_{it} (depreciated past sum of R&D expenditures)
- $\delta = \text{strength of R\&D spillovers}$

Paul Schrimpf

Introductio

Describing

Network structure

Gandal (2011)
Claussen, Falck, an
Grohsjean (2012)
Related Subsequen

Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

Reference

Endogeneity

- $E[\log S_{jt}v_{it}] \neq 0$ from e.g. v_{jt} correlated with v_{it} , or S_{jt} chosen with some knowledge of v_{it}
- Endogenous connections $E[g_{(ij)t}v_{it}] \neq 0$

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Gandal (2011)
Claussen, Falck, and
Grohsjean (2012)
Related Subsequent

Zacchia (2019)

Acemoglu, Akcigit,

Deference

Analytic Framework

- Firms $\mathcal I$ with connection $\mathcal G$
- Knowledge capital

$$\tilde{S}_i = S_i^{\gamma} \left(\prod_j S_j^{g_{ij}} \right)^{\delta}$$

- R&D cost $e^{\bar{\omega}_i}S_i$
- Cobb-Douglas Production as above
- Firms maximize profits (output minus linear input costs minus R&D costs)

Paul Schrimpf

Introductio

Describing Networks

Network structure

Fershtman an Gandal (2011)

Claussen, Falck, a Grohsjean (2012) Related Subseque

Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

Reference

Equilibrium

• Unique Bayes-Nash equilibrium with

$$\log S_i^* = \frac{\log \gamma + \sum_q \beta_q (\log \beta_q - \log \xi_q - \log \gamma)}{1 - \gamma - \sum_q \beta_q} b_i^*(\mathcal{G}; \vartheta) + s_i^*(\Omega_i; \mathcal{G})$$

where

- $\vartheta = \frac{\delta}{1 \gamma \sum_q \beta_q}$
- $b_i^*(\mathcal{G}; \vartheta)$ is Katz-Bonacich network centrality
- Ω_i is firm's information set and

$$\mathsf{s}_i^*(\Omega_i;\mathcal{G}) = \frac{\omega_i - (1 - \sum_q \beta_q \bar{)}\omega_i + \log \mathsf{E}[\prod_j e^{g_{ij}\delta \mathsf{s}_j^*(\Omega_j,\mathcal{G})}|\Omega_i]}{1 - \gamma - \sum_q \beta_q}$$

Paul Schrimpf

Introduction

Describing Networks

Network structure

Gandal (2011)
Claussen, Falck, and
Grohsjean (2012)
Related Subsequent

Zacchia (2019) Acemoglu, Akcigit,

References

Identifying Assumptions

- Correlation of $\log S_{jt}$ with unobservables of i happens through $s_i^*(\Omega_i;\mathcal{G})$ due to ω_{it} and ω_{jt} possibly being correlated and Ω_i potentially being informative about ω_{jt}
- Assumption 1: $\exists C > 0$ such that if distance from i to j is greater than C, then $Cov(\omega_i, \omega_j | d_{ij} > C) = 0$ and $Cov(\bar{\omega}_i, \bar{\omega}_i | d_{ij} > C) = 0$
- Assumption 2: $\exists L > 0$ such that $d_{ij} > L$ implies $(\omega_j, \bar{\omega}_j) \notin \Omega_i$
- Implies:

$$Cov(\omega_i, \log S_j | d_{ij} > C + L) = 0$$

 $Cov(\log S_i \log S_j | d_{ij} \le C + 2L) \lesssim 0$
 $Cov(\log S_i \log S_i | d_{ii} > C + 2L) = 0$

• Use $\log S_k$ as instrument for $\log S_j$ when k and j are distance $C + L < D \le C + 2L$ apart

Paul Schrimpf

Introduction

Describing Networks

Network structure a outcomes

Fershtman and Gandal (2011) Claussen, Falck, a Grohsjean (2012) Related Subseque

Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

Reference

TABLE 2
Production function, ordinary least squares estimates, 1981–2001

•	(1)	(2)	(3)	(4)	(5)
Private R&D (γ)	0.0455***	0.0438***	0.0568***	0.0554***	0.0515***
	(0.0108)	(0.0105)	(0.0118)	(0.0128)	(0.0142)
R&D spillovers (δ)	0.0159***	0.0147***	0.0114***	0.0118***	0.0116***
•	(0.0023)	(0.0024)	(0.0024)	(0.0025)	(0.0028)
Geographic spillovers		0.0035	0.0027	0.0023	0.0015
		(0.0021)	(0.0020)	(0.0023)	(0.0019)
Capital	0.2071***	0.2061***	0.2035***	0.2020***	0.2023***
	(0.0143)	(0.0145)	(0.0194)	(0.0213)	(0.0198)
Labour	0.6550***	0.6580***	0.6634***	0.6613***	0.6622***
	(0.0241)	(0.0249)	(0.0351)	(0.0359)	(0.0363)
Jaffe tech. proximity		0.1352**	0.0361	0.0026	0.0179
		(0.0581)	(0.0583)	(0.0766)	(0.0805)
Fixed effects	YES	YES	YES	YES	YES
Only network	NO	NO	YES	YES	YES
No. of communities					
(Community × Year Effects)	0	0	0	10	20
No. of observations	12,503	12,503	7,607	7,607	7,607

Notes: The table reports OLS estimates of model (4.11). Columns 1 and 2 are estimated over the entire original sample of 736 firms in the time interval 1981–2001. Estimates in columns 3, 4, and 5 restrict the sample to firms with at least one non-zero connection $(g_{(j))} \neq 0$) in any year t: all observations of these firms are also included for years with no connections. All estimates include firm and year fixed effects. Columns 4 and 5 include additional community-by-year fixed effects, where communities in column 4 and $\varphi = 0.6$ (20 communities) in column 5. Standard errors are clustered by the 20 "communities" obtained via the Louvain algorithm with $\varphi = 0.6$ (small sample corrections are applied). All observations of the same individual firm in different years enter the same cluster. For estimates not restricted to the network, firms outside the network constitute single clusters. Asterisks denote conventional significance levels of r-tests (**t) $\varphi = 0.05$; ***t) $\varphi = 0.01$).

Paul Schrimpf

Introduction

Networks

Network structure & outcomes

Gandal (2011)

Claussen, Falck, a

Grohsjean (2012)

Related Subseque

Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

Reference

TABLE 3
Production function, first stage estimates, 1981–2001

	(1)	(2)	(3)	(4)	(5)
Distance 2 instrument	0.0043***	0.0044***			
	(0.0002)	(0.0002)			
Distance 3 instrument		-0.0001*	0.0006***	0.0005***	0.0005***
		(0.0001)	(0.0001)	(0.0001)	(0.0001)
Private R&D	0.1598***	0.1774***	0.5022***	0.4612***	0.4357***
	(0.0517)	(0.0488)	(0.1463)	(0.1436)	(0.1504)
Capital	0.1827	0.1895	0.6169**	0.5903**	0.5923**
	(0.1133)	(0.1098)	(0.2622)	(0.2719)	(0.2746)
Labour	-0.0761	-0.0530	-0.6482**	-0.6021**	-0.6541**
	(0.0921)	(0.0913)	(0.2412)	(0.2636)	(0.2631)
Jaffe tech. proximity	1.8439***	1.8224***	3.3663**	3.2740**	3.3672**
	(0.4808)	(0.5123)	(1.5953)	(1.3777)	(1.4690)
Fixed effects	YES	YES	YES	YES	YES
Only network	YES	YES	YES	YES	YES
No. of communities					
(Community × Year Effects)	0	0	0	10	20
F-statistic	255.17	219.47	24.92	32.06	19.18
No. of observations	7,607	7,607	7,607	7,607	7,607

Notes: The table reports OLS "first stage" regressions of the spillover variable $\sum_{j\neq i} g_{(ij)i} \log S_{ji}$ on selected instruments and all other right-hand side variables included in the regressions from Table 2. The sample is restricted to firms with at least one non-zero connection $(g_{(ij)i} \neq 0)$ in any year t; all observations of these firms are also included for years with no connections. Columns 1 and 2 include, on the right hand side, the distance 2 instrument; columns 2 through 5 include the distance 3 instrument. All estimates include firm and year fixed effects. Columns 4 and 5 include additional community-by-year fixed effects, where communities are obtained via the Louvain algorithm with $\varphi = 0.8$ (10 communities) in column 4 and $\varphi = 0.6$ (20 communities) in column 5. Standard errors are clustered by the 20 "communities" obtained via the Louvain algorithm with $\varphi = 0.6$ (small sample corrections are applied). All observations of the same individual firm in different years enter the same cluster. Asterisks denote conventional significance levels of t-tests (*p < 0.1; **p < 0.05; **p < 0.01).

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Claussen, Falck, and Grohsjean (2012) Related Subsequent

Zacchia (2019) Acemoglu, Akcigit,

Reference

TABLE 4
Production function, two stages least squares estimates, 1981–2001

	(1)	(2)	(3)	(4)	(5)
Private R&D (γ)	0.0560***	0.0562***	0.0510***	0.0489***	0.0464***
	(0.0117)	(0.0118)	(0.0111)	(0.0127)	(0.0131)
R&D spillovers (δ)	0.0127***	0.0125***	0.0204**	0.0230**	0.0211**
	(0.0029)	(0.0030)	(0.0084)	(0.0088)	(0.0095)
Geographic spillovers	0.0027	0.0027	0.0030	0.0026	0.0018
	(0.0019)	(0.0019)	(0.0018)	(0.0021)	(0.0018)
Capital	0.2025***	0.2027***	0.1969***	0.1944***	0.1956***
•	(0.0200)	(0.0199)	(0.0225)	(0.0244)	(0.0234)
Labour	0.6642***	0.6640***	0.6692***	0.6677***	0.6685***
	(0.0357)	(0.0356)	(0.0373)	(0.0382)	(0.0392)
Jaffe tech. proximity	0.0314	0.0324	0.0041	-0.0364	-0.0167
	(0.0549)	(0.0553)	(0.0545)	(0.0669)	(0.0744)
Spillovers IV(s)	D=2	D = 2,3	D=3	D=3	D=3
Fixed effects	YES	YES	YES	YES	YES
Only network	YES	YES	YES	YES	YES
No. of communities					
(Community × Year Effects)	0	0	0	10	20
No. of observations	7,607	7,607	7,607	7,607	7,607

Notes: The table reports IV-2SLS estimates of model (4.11). All estimates are restricted to firms with at least one non-zero connection $(g_{(j)}, = 0)$ in any year f; all observations of these firms are also included for years with no connections. Models in columns 1 and 2 employ the distance 2 instrument; models in columns 2 through 5 employ the distance 3 instrument. All estimates include firm and year fixed effects. Columns 4 and 5 include additional community-by-year fixed effects, where communities are obtained via the Louvain algorithm with $\varphi = 0.8$ (10 communities) in column 4 and $\varphi = 0.6$ (20 communities) in column 5. Standard errors are clustered by the 20 "communities" obtained via the Louvain algorithm with $\varphi = 0.6$ (small sample corrections are applied). All observations of the same individual firm in different years enter the same cluster. Asterisks denote conventional significance levels of t-tests (**p < 0.05; ***p < 0.01).

Paul Schrimpf

Introductio

Describing Networks

Network structure outcomes

Claussen, Falck, Grohsjean (2012) Related Subsequ

Zacchia (2019) Acemoglu, Akcigit,

and Kerr (2016)

Reference

Conclusions

- D = 2 IV near OLS implies D = 2 might be too small, i.e.
 C = 2
- Marginal social return = $(\gamma + \delta \bar{g}_i) \frac{Y_i}{S_i} = 114\%$ considerably greater than marginal private return = $\gamma \frac{Y_i}{S_i} = 102\%$

Paul Schrimpf

Introductio

Describing Networks

Network structure

Fershtman and Gandal (2011)

Grohsjean (2012)
Related Subsequ

Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

Reference

Acemoglu, Akcigit, and Kerr (2016)

"Innovation network"

- Directed network of patent citations, 1975-2004
- Results:
 - Network stable over time
 - Past innovations (patents) in connected industries predict current patents
 - Impact of innovations are localized

Paul Schrimpf

Introduction

Describing

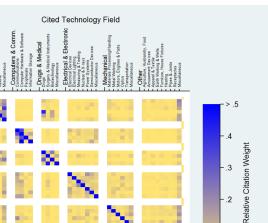
Network structure

Fershtman an

Claussen, Falck, and Grohsjean (2012) Agriculture, Food Price

Computers & Comm. - Communications Computer Hardware & Software Peripherals Information Storage

Drugs & Medical —
Drugs = Drugs = Drugs = Blotechnologs - Miscellaneous = Electrical & Electronic —


Annusement Devices
Apparel & Textile
Earth Working & Wells
Furniture, House Fixtures
Heating
Pipes & Joints
Receptacles
Miscellaneous

Citing Technology Field

Related Subsequent Work

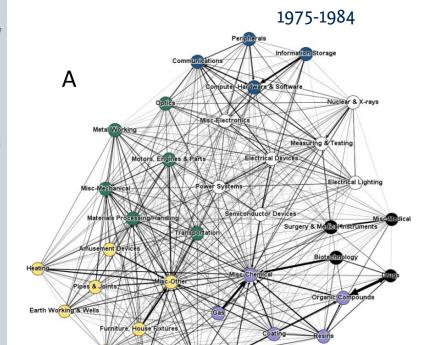
Zacchia (20

Acemoglu, Akcigit, and Kerr (2016)

Paul Schrimpf

Introduction

Describin Networks


Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck

Related Subseq

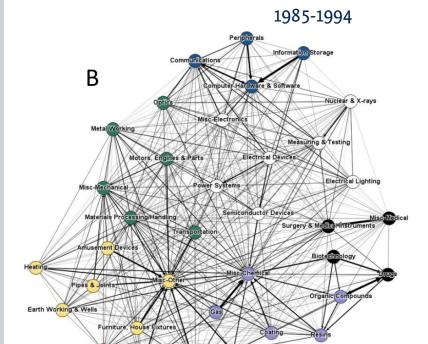
Zacchia (20

Acemoglu, Akcigit, and Kerr (2016)

Paul Schrimpf

Introduction

Describin Networks


Network structure

Fershtman and Gandal (2011)

Grohsjean (2012) Related Subsequ

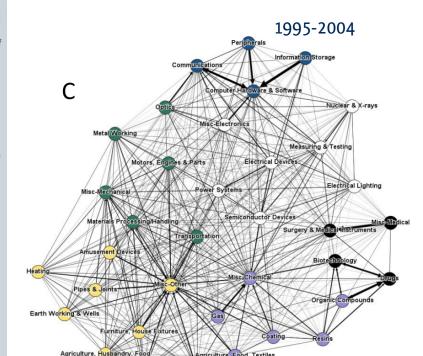
Zacchia (20

Acemoglu, Akcigit, and Kerr (2016)

Paul Schrimpf

Introduction

Describin


Network structure

Fershtman ar Gandal (2011)

Claussen, Falck, a Grohsjean (2012) Related Subseque

Zacchia (2

Acemoglu, Akcigit, and Kerr (2016)

Paul Schrimpf

Introductio

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011) Claussen, Falck, an Grohsjean (2012) Related Subsequen Work Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

Reference

Predicting patents

• Predicted patents in industry *j* from past citations:

$$\hat{P}_{j,t} = \sum_{k \neq j} \sum_{a=1}^{10} \frac{Citations_{j \rightarrow k,a}}{Patents_k} P_{k,t-a}$$

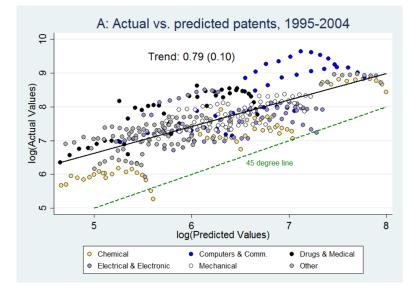
where

- Citations_{$j \to k,a$} = citations of a patent in industry k that is a years old from j
- $Patents_k = total patents in k$
- Both estimated using 1975-1994 data
- Predictions for 1995-2004

Paul Schrimpf

Introduction

Describing Networks


Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck, a

Grohsjean (2012) Related Subsequ

Zacchia (20:

Acemoglu, Akcigit, and Kerr (2016)

Paul Schrimpf

Introduction

Describing Networks

Network structure & outcomes

Fershtman and Gandal (2011) Claussen, Falck, and Grohsjean (2012)

Zacchia (2019

Acemoglu, Akcigit, and Kerr (2016)

Reference

Appendix Table 2: Disaggregated analysis of innovation network

	Full sample with >5 per annum			Restricted sample with >50 per annum		
	(1)	(2)	(3)	(4)	(5)	(6)
	Dependent variable is log cumulative patent counts in patent class 1995-2004					
Log cumulative patents 1985-1994	0.678 (0.061)	0.732 (0.055)	0.840 (0.066)	0.785 (0.083)	0.806 (0.069)	0.905 (0.079)
Log expected patenting from network stimulus	0.345 (0.052)			0.265 (0.066)		
Log expected patenting from network stimulus due to top 10 upstream classes		0.298 (0.056)			0.294 (0.066)	
Log expected patenting from network stimulus due to next 10 upstream classes		0.067 (0.074)			-0.041 (0.091)	
Log expected patenting from network stimulus outside of top 20 upstream classes		-0.061 (0.054)			-0.032 (0.068)	
Log expected patenting from network stimulus within subcategory			0.077 (0.029)			0.043 (0.037)
Log expected patenting from network stimulus within rest of category			0.105 (0.037)			0.097 (0.047)
Log expected patenting from network stimulus outside of category			-0.004 (0.048)			0.012 (0.054)

Notes: See Appendix Table 1. In Columns 2 and 5, we separate the upstream stimulus provided by the ten most-important upstream classes, the next ten upstream classes, and those beyond. These upstream classes are defined by citation shares made by the focal class during the pre-1995 period. In two cases, the patent class cites fewer than ten upstream categories and is excluded. Columns 3 and 6 alternatively rely on the USPTO classification system of subcategories and categories, which is naturally cruder since it is less-tailored to an individual technology's citation patterns. The disaggregated results do not add up to the total network effect due to the log transformations.

Network structure and outcomes Paul Schrimpf

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck Grohsjean (201

Work Zacchia (2019)

References

Acemoglu, Daron, Ufuk Akcigit, and William R Kerr. 2016. "Innovation network." *Proceedings of the National Academy of Sciences*:201613559URL http://www.pnas.org/content/113/41/11483.abstract.

Athey, Susan and Glenn Ellison. 2014. "Dynamics of Open Source Movements." *Journal of Economics & Management Strategy* 23 (2):294–316. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/jems.12053.

Claussen, Jörg, Oliver Falck, and Thorsten Grohsjean. 2012. "The strength of direct ties: Evidence from the electronic game industry." International Journal of Industrial Organization 30 (2):223 - 230. URL http://www.sciencedirect.com/science/article/pii/S016771871100083X.

Economides, Nicholas. 1996. "The economics of networks." International Journal of Industrial Organization 14 (6):673 – 699. URL http://www.sciencedirect.com/science/article/pii/0167718796010156.

Paul Schrimpf

Introductio

Describing Networks

Network structure outcomes

Fershtman and Gandal (2011) Claussen, Falck, and Grohsjean (2012) Related Subsequent Work Zacchia (2019)

Acemoglu, Akcigit, and Kerr (2016)

References

Economides, Nicholas and David Encaoua. 1996. "Special issue on network economics: Business conduct and market structure." *International Journal of Industrial Organization* 14 (6):669 – 671. URL http://www.sciencedirect.com/science/article/pii/0167718796010193.

Fershtman, Chaim and Neil Gandal. 2011. "Direct and indirect knowledge spillovers: the "social network" of open-source projects." *The RAND Journal of Economics* 42 (1):70–91. URL http:

//dx.doi.org/10.1111/j.1756-2171.2010.00126.x.

Gandal, Neil and Uriel Stettner. 2016. "Network dynamics and knowledge transfer in virtual organisations."

International Journal of Industrial Organization 48:270–290.

URL https://www.sciencedirect.com/science/article/pii/S0167718716301278.

Paul Schrimpf

Introduction

Describing Networks

Network structure 8 outcomes

Claussen, Falck, ar Grohsjean (2012) Related Subsequer Work

Acemoglu, Akcigit, and Kerr (2016)

References

Goyal, Sanjeev. 2012. Connections: an introduction to the economics of networks. Princeton University Press. URL http://site.ebrary.com/lib/ubc/docDetail.action?docID=10364776.

Jackson, Matthew O. 2010. *Social and economic networks*. Princeton University Press.

Zacchia, Paolo. 2019. "Knowledge Spillovers through Networks of Scientists." *The Review of Economic Studies* 87 (4):1989–2018. URL https://doi.org/10.1093/restud/rdz033.