Paul Schrimpf

Market entry

Paul Schrimpf

UBC Economics 565

February 16, 2023

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other application

References

Part I

Overview of market entry

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

1 Introduction Starc (2014)

2 Bresnahan and Reiss (1991)

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

• Reviews:

- Aguirregabiria (2021) chapter 5
- Sutton (1991) theory
- Aradillas-López (2020), Kline, Pakes, and Tamer (2021) econometrics
- Levin (2009)
- Key papers:
 - Bresnahan and Reiss (1991)

References

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Other application

References

Section 1

Introduction

Paul Schrimpf

Introduction

Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Introduction 1

- Models of entry:
 - Dependent variable = firm decision to operate or not in a market
 - Enter industry, open new store, introduce new product, release a new movie, bid in an auction
 - Sunk cost from being active in market
 - Payoff of being active depends on how many other firms are in the market (game)

$$a_{im} = \mathbf{1} \{ \prod_{im} (N_m, X_{im}, \epsilon_{im}) \geq 0 \}$$

- Estimate □ using revealed preference
- Static models: entry \approx being in active in market; not transition in/out

Paul Schrimpf

Introduction

Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Why estimate models of entry?

- Why not just estimate payoff function using demand and production estimation techniques?
 - Answers new questions: source of market power
 - Efficiency: entry conditions provide additional information about payoffs, so using them can give us more precise estimates
 - Identification: some parameters (e.g. fixed costs) can only be identified from entry
 - Requires less data: price and quantity data not needed for some entry models
 - Controlling for selection

Paul Schrimpf

Introduction Starc (2014)

- Bresnahan and Reiss (1991)
- Other applications

References

Starc (2014) 1

- What are the sources and consequences of insurer market power?
- Sutton (1991):
 - Model with price competition & fixed costs implies number of firms $\rightarrow \infty$ as market size $\rightarrow \infty$
 - Model with price competition & endogenous fixed costs implies number of firms \rightarrow constant as market size $\rightarrow \infty$
 - Illustrative simplified model from Schmalensee (1992)
 - Exogenous, p, c, endogenous A_i (advertising)

$$\pi_i = (p-c)Srac{A_i^e}{\sum_{j=1}^N A_j^e} - A_i - \sigma$$

• Symmetric Nash equilibrium:

$$0 = (1/N^*)(1-e) + (1/N^*)^2 e - (\sigma/S)(1/(P-c))$$

if $e \in (1, 2]$, then $N^* \rightarrow e/(e-1)$ as $S \rightarrow \infty$

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

- Entry model:
 - Mutual of Omaha: fixed cost of entry (including advertising) in market *m* is Θ_{Mm}
 - Assume:
 - **1** Mutual of Omaha is profitable $\prod_{Mm}(1, 1) \Theta_{Mm} \ge 0$
 - 2 It is not profitable for another firm to mimic Mutual of Omaha and enter $\Pi_{Mm}(1, 2) \Theta_{Mm} \leq 0$

implies $E[\Pi_{Mm}(2, 1)] \le E[\Theta_{Mm}] \le E[\Pi_{Mm}(1, 1)]$

• Similar for United Health, but they pay a single national suck cost $\Phi_{\textit{U}}$ each year and

$$\mathsf{E}[\sum_{m} \Pi_{Um}(\mathbf{2}, \mathbf{1})] \le \mathsf{E}[\Phi_{U}] \le \mathsf{E}[\sum_{m} \Pi_{Um}(\mathbf{1}, \mathbf{1})]$$

Paul Schrimpf

Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Source of market power

TABLE A7 Fixed and Sunk Cost Estimates

	Lower Bound	Upper Bound
Sunk cost,	\$99, 261, 645.01	\$487, 935, 210.41
UnitedHealth	(\$1, 530, 902, 861, 706.31)	(\$23, 031, 614, 127.02)
Fixed cost,	\$445,010.32	\$796, 342.56
Mutual of Omaha	(\$225, 593.04)	(\$3, 578, 033.82)

TABLE A8 Marketing Expenditure and Advertising Value

	United Health	Mutual of Omaha
L.B. of sunk (fixed) cost/consumer	\$23.65	\$8.37
U.B. of sunk (fixed) cost/consumer	\$73.09	\$14.81
Average marginal cost/consumer	\$98.27	\$238.67
L.B. of total marketing cost/consumer	\$121.92	\$247.05
U.B. of total marketing cost/consumer	\$171.36	\$253.48

Notes: Compensating variation is calculated as the average across consumers within a market using the standard log-sum formula; the number reported is the median across markets.

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Section 2

Bresnahan and Reiss (1991)

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Bresnahan and Reiss (1991)

- Can learn a lot from market entry with very limited data
- Cross-section of isolated markets where we observe
 - Number of firms
 - Some market characteristics (prices and quantities not needed)
- Identify:
 - Fixed costs
 - Degree of competition: payoffs = *f*(number of firms)

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other application

References

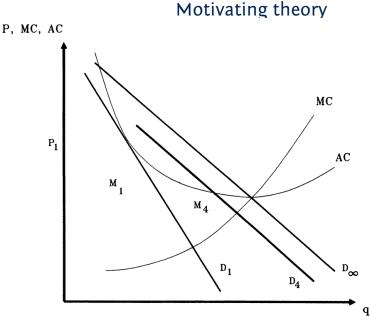


FIG. 1.—Breakeven firm demand and margins

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Motivating theory

• Demand = d(P) S

market size

• Monopolist entry:

$$0 = (P_1 - AVC(q_1))d(P_1)S_1 - F$$

$$S_1 = \frac{F}{(P_1 - AVC(q_1))d(P_1)}$$

 Symmetric market with *n* firms, demand per firm = d(P)S/n, entry threshold for *n*th firm

$$S_n = \frac{F}{(P_n - AVC(q_n))d(P_n)}$$

- *P_n*, *q_n*, depend on "competitive conduct" (form of competition, residual demand for firm who deviates from equilibrium *P_n*)
- As $n \to \infty$, $S_n/n \to s_\infty$ = minimal market size per firm to support entry when *P*, *q* competitive
- S_{n+1}/S_n measures how competitive conduct changes

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

• Questions:

- Degree of competition: how fast profits decline with *n_m*
- How many entrants needed to achieve competitive equilibrium (contestable markets)
- Data:
 - Retail and professional industries (doctors, dentists, pharmacies, car dealers, etc.), treat each industry separately
 - M markets
 - *n_m* firms per market
 - S_m market size
 - *x_m* market characteristics

Setting

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

• N potential entrants

• Profit of each firm when *n* active = $\prod_m(n)$

- Π_m decreasing in *n*
- Equilibrium:

$$\exists_m(n_m) \ge 0$$
 and $P_m(n_m+1) < 0$

• Profit function:

$$\Pi_{m}(n) = \underbrace{V_{m}(n)}_{\text{variable}} - \underbrace{F_{m}(n)}_{\text{fixed}}$$
$$= S_{m} v_{m}(n) - F_{m}(n)$$
$$= S_{m} \left(x_{m}^{D} \beta - \alpha(n) \right) - \left(x_{m}^{c} \gamma + \delta(n) + \epsilon_{m} \right)$$

where

• $\alpha(1) \leq \alpha(2) \leq \cdots \leq \alpha(N)$

Model 1

Model 2

Market entry

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

- $\delta(1) \leq \delta(2) \leq \cdots \leq \delta(N)$
 - Entry deterrence, firm heterogeneity, real estate prices
- Key difference between variable and fixed profits is that variable depend on S_m , fixed do not

Paul Schrimpf

Bresnahan and Reiss (1991)

References

Estimation 1

• Parameters
$$\theta = (\beta, \gamma, \alpha, \delta)$$

• MLE
 $\hat{\theta} = \arg \max_{\theta} \sum_{m=1}^{M} \log P(n_m | x_m, S_m; \theta)$

-

• Assume $\epsilon_m \sim N(0, 1)$, independent of x_m , S_m

~

MLE

10

$$P(n|x_m, S_m; \theta) = P(\Pi_m(n) \ge 0 > \Pi_m(n+1))$$

$$= P\left(\begin{cases} S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n) - \delta(n) \ge \epsilon \\ \epsilon > S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n+1) - \delta(n+1) \end{cases} \right)$$

$$= \Phi\left(S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n) - \delta(n) \right) - \\ - \Phi\left(S_m x_m^D \beta - x_m^C \gamma - S_m \alpha(n+1) - \delta(n+1) \right)$$

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

202 isolated local markets

- Population 500-75,000
- \geq 20 miles from nearest town of 1,000+
- \geq 100 miles from city of 100,000+
- 16 industries: retail and professions, each estimated separately

Data

Paul Schrimpf

Introduction

Bresnahan and Reiss (1991)

Other applications

References

SAMPLE MARKET DESCRIPTIVE STATISTICS

Variable	Name	Mean	Standard Deviation	Min	Max
Firm counts:					
Doctors	DOCS	3.4	5.4	.0	45.0
Dentists	DENTS	2.6	3.1	.0	17.0
Druggists	DRUG	1.9	1.5	.0	11.0
Plumbers	PLUM	2.2	3.3	.0	25.0
Tire dealers	TIRE	2.6	2.6	.0	13.0
Population variables (in thousands):					
Town population	TPOP	3.74	5.35	.12	45.09
Negative TPOP growth	NGRW	06	.14	-1.34	.00
Positive TPOP growth	PGRW	.49	1.05	.00	7.23
Commuters out of the					
county	OCTY	.32	.69	.00	8.39
Nearby population	OPOP	.41	.74	.01	5.84
Demographic variables:					
Birth + county population	BIRTHS	.02	.01	.01	.04
65 years and older ÷					
county population	ELD	.13	.05	.03	.30
Per capita income					
(\$1,000's)	PINC	5.91	1.13	3.16	10.50
Log of heating degree					
days	LNHDD	8.59	.47	6.83	9.20
Housing units ÷ county					
population	HUNIT	.46	.11	.29	1.40
Fraction of land in farms	FFRAC	.67	.35	.00	1.27
Value per acre of farm- land and buildings					
(\$1,000's)	LANDV	.30	.23	.07	1.64
Median value of owner- occupied houses					1.01
(\$1,000's)	HVAL	32.91	14.29	9.90	106.0

SOURCE —Firm counts' American Business Lists, Inc.; population variables: U.S. Bureau of the Census (1983) and Renud McNally Commercial Atlas and Marketing Guide (annual); demographic variables: U.S. Bureau of the Census (1983).

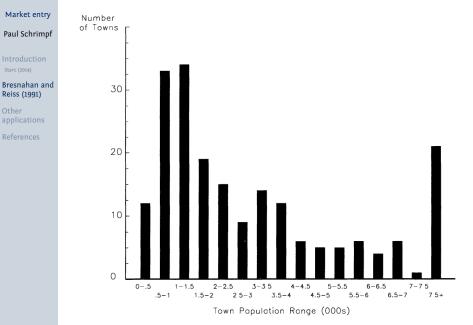


FIG. 2.-Number of towns by town population

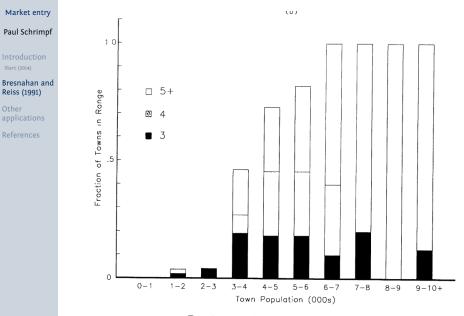


FIG. 3.—Dentists by town population

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

- For most industries, $\alpha(n)$ and $\delta(n)$ increase with n
- Define S(n) =minimal S such that *n* firms enter

$$S(n) = \frac{x_m^C \gamma + \delta(n)}{x_m^D \beta - \alpha(n)}$$

Varies across industries

•
$$\frac{S(n)}{n} \approx \text{constant for } n \geq 5$$

• Contestable markets (Baumol, Panzar, and Willig, 1982) : an industry can be competitive even with few firms if there is easy entry

Results

Paul Schrimpf

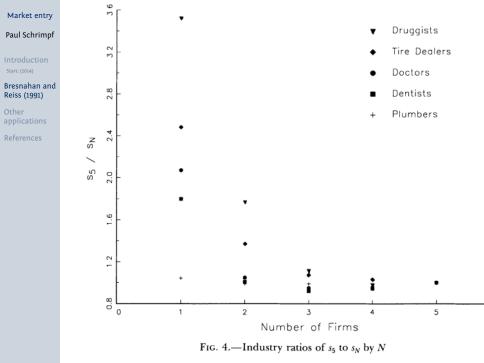
Introduction

Bresnahan and Reiss (1991)

Other applications References

TABLE 5

A. ENTRY THRESHOLD ESTIMATES


		ENTRY THRESHOLDS (000's)					Per Firm Entry Threshold Ratios			
PROFESSION	<i>S</i> ₁	S2	S_3	S4	S_5	s_2/s_1	s_{3}/s_{2}	s_4/s_3	s5/s4	
Doctors	.88	3.49	5.78	7.72	9.14	1.98	1.10	1.00	.95	
Dentists	.71	2.54	4.18	5.43	6.41	1.78	.79	.97	.94	
Druggists	.53	2.12	5.04	7.67	9.39	1.99	1.58	1.14	.98	
Plumbers	1.43	3.02	4.53	6.20	7.47	1.06	1.00	1.02	.96	
Tire dealers	.49	1.78	3.41	4.74	6.10	1.81	1.28	1.04	1.03	

B. LIKELIHOOD RATIO TESTS FOR THRESHOLD PROPORTIONALITY

Profession	Test for $s_4 = s_5$	Test for $s_3 = s_4 = s_5$	Test for $s_2 = s_3 = s_4 = s_5$	Test for $s_1 = s_2 = s_3 = s_4 = s_5$
Doctors	1.12 (1)	6.20 (3)	8.33 (4)	45.06* (6)
Dentists	1.59 (1)	12.30* (2)	19.13* (4)	36.67* (5)
Druggists	.43 (2)	7.13 (4)	65.28* (6)	113.92* (8)
Plumbers	1.99 (2)	4.01 (4)	12.07 (6)	15.62* (7)
Tire dealers	3.59 (2)	4.24 (3)	14.52* (5)	20.89* (7)

NOTE-Estimates are based on the coefficient estimates in table 4. Numbers in parentheses in pt. B are degrees of freedom.

* Significant at the 5 percent level.

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Further evidence - prices

TABLE 10

TIRE PRICE SAMPLE DESCRIPTIVE STATISTICS

	NUMBER OF TIRE DEALERS IN THE MARKET						
	1	2	3	4	5	1.5	Urban
Candidate phone listings	39	66	48	64	75	*	200+
Surveyed by us	36	22	19	28	21	20	19
At listed number	32	19	19	24	21	17	18
Would respond	28	19	19	23	20	14	17
Total prices quoted	76	52	50	64	49	36	62
Usable price quotations	42	31	40	57	45	17	59
	Sample Means						
Price	54.9	55.7	54.4	51.6	52.0	53.8	45.6
Tire mileage rating (000)	44.5	47.0	47.7	45.4	43.8	43.0	45.3
	Sample Medians						
Price	53.9	55.0	52.9	50.9	49.8	51.7	43.2
Tire mileage rating (000)	45	45	50	40	40	40	45

* Unknown.

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications References

Further evidence - prices

Tire Price Regressions (N = 282)

	Ordina Sqi	Least Absolut Deviations			
VARIABLE NAME	(1)	(2)	(3)		
Constant term	26.4	29.9	29.5		
	(4.69)	(4.87)	(4.43)		
Monopoly market dummy	1.88	.26	.54		
., ,	(2.12)	(2.33)	(2.12)		
Duopoly market dummy	1.88	62	.96		
• • •		(2.42)	(2.30)		
Triopoly market dummy	-1.80	-2.60	-2.12		
• • •	(2.05)	(2.34)	(2.11)		
Quadropoly market dummy	-1.80	-3.36	-2.53		
		(2.21)	(2.01)		
Quintopoly market dummy	-1.80	-1.99	-2.00		
		(2.22)	(2.01)		
Urban market dummy	-12.1	-11.0	-11.4		
	(2.62)	(2.62)	(2.38)		
Mileage rating	.43	.38	.39		
	(.05)	(.05)	(.05)		
County retail wage	1.00	.62	.74		
	(.53)	(.53)	(.49)		
Other dummy variables	Michelin brand	11 brands	11 brands		
Regression R ²	.43	.51			
F or χ^2 hypothesis tests:					
$\alpha_1 = \alpha_2$.01	.01	1.1		
$\alpha_3 = \alpha_4 = \alpha_5$.68	.70	2.3		
$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5$	2.82*	2.86*	448*		

NOTE.—The omitted category is all towns not satisfying our monopoly market definition. The numbers in parentheses are asymptotic standard errors.

* Significant at the 5 percent level.

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Section 3

Other applications

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other applications

References

Other applications

- Supermarkets:
 - Bronnenberg, Dhar, and Dubé (2009)
 - Jia (2008)
 - Ellickson (2007)
- Airlines:
 - Berry (1992)
 - Ciliberto and Tamer (2009)
- Radio: Sweeting (2009)

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other application:

References

Aguirregabiria, Victor. 2021. "Empirical Industrial Organization: Models, Methods, and Applications." URL http:

//aguirregabiria.net/wpapers/book_dynamic_io.pdf.
Aradillas-López, Andrés. 2020. "The Econometrics of Static
Games." Annual Review of Economics 12 (1):135-165. URL
https://doi.org/10.1146/
annurey-economics-081919-113720.

Baumol, WJ, JC Panzar, and RD Willig. 1982. "Contestable markets and the theory of industry structure." .

Berry, S.T. 1992. "Estimation of a Model of Entry in the Airline Industry." *Econometrica: Journal of the Econometric Society* :889–917URL

http://www.jstor.org/stable/10.2307/2951571.

Bresnahan, Timothy F. and Peter C. Reiss. 1991. "Entry and Competition in Concentrated Markets." *Journal of Political Economy* 99 (5):pp. 977–1009. URL http://www.jstor.org/stable/2937655.

Paul Schrimpf

Introductior Starc (2014)

Bresnahan and Reiss (1991)

Other application

References

Bronnenberg, B.J., S.K. Dhar, and J.P.H. Dubé. 2009. "Brand history, geography, and the persistence of brand shares." *Journal of Political Economy* 117 (1):87–115. URL http://www.jstor.org/stable/10.1086/597301.

Ciliberto, F. and E. Tamer. 2009. "Market structure and multiple equilibria in airline markets." *Econometrica* 77 (6):1791–1828. URL http://onlinelibrary.wiley. com/doi/10.3982/ECTA5368/abstract.

Ellickson, P.B. 2007. "Does Sutton apply to supermarkets?" The RAND Journal of Economics 38 (1):43-59. URL http://onlinelibrary.wiley.com/doi/10.1111/j. 1756-2171.2007.tb00043.x/abstract.

Jia, P. 2008. "What Happens When Wal-Mart Comes to Town: An Empirical Analysis of the Discount Retailing Industry." *Econometrica* 76 (6):1263–1316. URL http://onlinelibrary.wiley.com/doi/10.3982/ ECTA6649/abstract.

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other application

References

Kline, Brendan, Ariel Pakes, and Elie Tamer. 2021. "Chapter 5 - Moment inequalities and partial identification in industrial organization." In Handbook of Industrial Organization, Volume 4, Handbook of Industrial Organization, vol. 4, edited by Kate Ho, Ali Hortaçsu, and Alessandro Lizzeri. Elsevier, 345–431. URL https://www.sciencedirect.com/science/article/ pii/S1573448X21000054.

Levin, Jonathan. 2009. "Entry and market structure." Lecture notes. URL http://www.stanford.edu/~jdlevin/Econ% 20257/Entry%20and%20Market%20Structure.pdf.

Schmalensee, Richard. 1992. "Sunk Costs and Market Structure: A Review Article." The Journal of Industrial Economics 40 (2):125–134. URL http://www.jstor.org/stable/2950504.

Paul Schrimpf

Introduction Starc (2014)

Bresnahan and Reiss (1991)

Other application

References

Starc, Amanda. 2014. "Insurer pricing and consumer welfare: evidence from Medigap." The RAND Journal of Economics 45 (1):198–220. URL http://dx.doi.org/10.1111/1756–2171.12048.

Sutton, J. 1991. Sunk costs and market structure: Price competition, advertising, and the evolution of concentration. MIT press.

Sweeting, Andrew. 2009. "The Strategic Timing Incentives of Commercial Radio Stations: An Empirical Analysis Using Multiple Equilibria." *The RAND Journal of Economics* 40 (4):pp. 710–742. URL

http://www.jstor.org/stable/25593735.